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CHAPTER I.

ARCHIMEDES.

\
IF the ordinary person were asked to say off-hand what
he knew of Archimedes, he would probably, at the most,
be able to quote one or other of the well-known stories

about him : how, after discovering the solution of some

problem in the bath, he was so overjoyed that he ran

naked to his house, shouting evpijKa, evptjica (or, as we
might say,

" I've got it, I've got it ") ;
or how he said

" Give me a place to stand on and I will move the

earth"; or again how he was killed, at the capture of

Syracuse in the Second Punic War, by a Roman soldier

who resented being told to get away from a diagram
drawn on the ground which he was

studying.j
And it is to be feared that few who are not experts in

the history of mathematics have any acquaintance with

the details of the original discoveries in mathematics
of the greatest mathematician of antiquity, perhaps the

greatest mathematical genius that the world has ever

seen.

History and tradition know Archimedes almost ex-

clusively as the inventor of a number of ingenious
mechanical appliances, things which naturally appeal
more to the popular imagination than the subtleties of

pure mathematics.

Almost all that is told of Archimedes reaches us

through the accounts by Polybius and Plutarch of the

siege of Syracuse by Marcellus. He perished in the sack

of that city in 212 B.C., and, as he was then an old man
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(perhaps 75 years old), he must have been born about

287 B.C
]
He was the son of Phidias, an astronomer,

and was a friend and kinsman ofKing Hieron ofSyracuse
and his son Gelon. He spent some time at Alexandria

studying with the successors of Euclid (Euclid who
flourished about 300 B.C. was then no longer living).

It was doubtless at Alexandria that he made the

acquaintance of Conon of Samos, whom he admired
as a mathematician and cherished as a friend, as well

as of Eratosthenes
;
.to the former, and to the latter

during his early periods he w&s m the habit of communi-

cating his discoveries before their publication. It was
also probably in Egypt that he invented the water-screw

known by his name, the immediate purpose being the

drawing of water for irrigating fields.

/ After his return to Syracuse he lived a life entirely
devoted to mathematical research. Incidentally he be-

came famous through his clever mechanical inventions.

^CThese things were, however, in his case the " diversions

of geometry at play," and he attached no importance to

them. In the words of Plutarch,
" he possessed so lofty

a spirit, so profound a soul, and such a wealth of scientific

knowledge that, although these inventions had won for

him the renown of more than human sagacity, yet he

would not consent to leave behind him any written work
on such subjects, but, regarding as ignoble and sordid

the business of mechanics and every sort of art which is

directed to practical utility, he placed his whole ambition

in those speculations in the beauty and subtlety of which

there is no admixture of the common needs of life ".

'

During the siege of Syracuse Archimedes contrived

all sorts of engines against the Roman besiegers. There
were catapults so ingeniously constructed as to be

equally serviceable at long or short range, and machines
for discharging showers of missiles through holes made
in the walls. Other machines consisted of long mov-
able poles projecting beyond the walls

;
some of these
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dropped heavy weights upon the enemy's ships and on
the constructions which they called sambuca, from their

resemblance to a musical instrument of that name, and
which consisted of a protected ladder with one end

resting on two quinqueremes lashed together side by
side as base, and capable of being raised by a windlass

;

others were fitted with an iron hand or a beak like that

of a crane, which grappled the prows of ships, then

lifted them into the air and let them fall again. /
Marcellus

is said to have derided his own engineers and artificers with

the words,
" Shall we not make an end of fighting with

this geometrical Briareus who uses our ships like cups to

ladle water from the sea, drives our sambuca offignomini-

ously with cudgel-blows, and, by the multitude of missiles

that he hurls at us all at once, outdoes the hundred-
handed giants of mythology ?

"
But the exhortation had

no effect, the Romans being in such abject terror that,

"if they did but see a piece of rope or wood projecting
above the wall they would cry 'there it is,' declaring
that Archimedes was setting some engine in motion

against them, and would turn their backs and run away,
insomuch that Marcellus desisted from all fighting and

assault, putting all his hope in a long siege".
Archimedes died, as he had lived, absorbed in mathe-

matical contemplation. The accounts of the circum-

stances of his death differ in some details. Plutarch

gives more than one version in the following passage :

" Marcellus was most of all afflicted at the death of

Archimedes, for, as fate would have it, he was intent on

working out some problem with a diagram, and, his mind
and his eyes being alike fixed on his investigation, 'he

never noticed the incursion of the Romans nor the

capture of the city. And when a soldier came up to

him suddenly and bade him follow to Marcellus, he

refused to do so until he had worked out his problem to

a demonstration
;

whereat the soldier was so enraged
that he drew his sword and slew him."\ Others say that
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the Roman ran up to him with a drawn sword, threaten-

ing to kill him
; and, when Archimedes saw him, he

begged him earnestly to wait a little while in order that

he might not leave his problem incomplete and unsolved,
but the other took no notice and killed him. Again,
there is a third account to the effect that, as he was

carrying to Marcellus some of his mathematical instru-

ments, sundials, spheres, and angles adjusted to the

apparent size of the sun to the sight, some soldiers met
him and, being under the impression that he carried gold
in the vessel, killed him." The most picturesque version

of the story is that which represents him as saying to a

Roman soldier who came too close,
" Stand away, fellow,

from my diagram/' whereat the man was so enraged that

he killed him.

/^Archimedes is said to have requested his friends and
^'relatives to place upon his tomb a representation of a

cylinder circumscribing a sphere within it, together with

an inscription giving the ratio (3/2) which the cylinder
bears to the sphere ;

from which we may infer that he
himself regarded the discovery of this ratio as his greatest
achievement.J Cicero, when quaestor in Sicily, found the

tomb in a neglected state and restored it. In modern
times not the slightest trace of it has been found.

T3eyond the above particulars of the life of Archimedes,
we have nothing but a number of stories which, if perhaps
not literally accurate, yet help us to a conception of the

personality of the man which we would not willingly
have altered. Thus, in illustration of his entire preoccu-

pation by his abstract studies, we are told that he would

forget all about his food and such necessities of life, and
would be drawing geometrical figures in the ashes of the

fire, or, when anointing himself, in the oil on his body.
A Of the same kind is the story mentioned above, that,

having discovered while in a bath the solution of the

question referred to him by Hieron as to whether a cer-

tain crown supposed to have been made of gold did not
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in fact contain a certain proportion of silver, he ran naked

through the street to his home shouting evprj/ca, evprjtca.

fit was in connexion with his discovery of the solution

of the problem To move a given weight by a given force

that Archimedes uttered the famous saying, "Give me a

place to stand on, and I can move the earth
"

(809 fiot,

TTOV aTa> KOLI Kivw Ti)v yi)v, or in his broad Doric, as one

version has it, ira /3w KOI KW$) rav yav). Plutarch repre-
sents him as declaring to Hieron that any given weight
could be moved by a given force, and boasting, in re-

liance on the cogency of his demonstration, that, if he

were given another earth, he would cross over to it and

move this one. "And when Hieron was struck with

amazement and asked him to reduce the problem to

practice and to show him some great weight moved by a

small force, he fixed on a ship of burden with three masts

from the king's arsenal which had only been drawn up
by the great labour of many men

;
and loading her with

many passengers and a full freight, sitting himself the

while afar off, with no great effort but quietly setting in

motion with his hand a compound pulley, he drew the

ship towards him smoothly and safely as if she were

moving through the sea." Hieron, we are told elsewhere,

was so much astonished that he declared that, from that

day forth, Archimedes's word was to be accepted on

every subject !j Another version of the story describes

the machine used as a helix ; this term must be supposed
to refer to a screw in the shape of a cylindrical helix

turned by a handle and acting on a cog-wheel with

oblique teeth fitting on the screw.

^Another invention was that of a sphere constructed so

as to imitate the motions of the sun, the moon, and the

five planets in the heavens. Cicero actually saw this

contrivance, and he gives a description of it, stating that

it represented the periods of the moon and the apparent
motion of the sun with such accuracy that it would even

(over a short period) show the eclipses of the suh and
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y It may have been moved by water, for Pappus
speaks in one place of" those who understand the making
of spheres and produce a model of the heavens by means
of the regular circular motion of water ". In any case it is

certain that Archimedes was much occupied with astron-

omy. Livy calls him "unicus spectator caeli siderum-

que". Hipparchus says, "From these observations it

is clear that the differences in the years are altogether

small, but, as to the solstices, I almost think that both

I and Archimedes have erred to the extent of a quarter
of a day both in observation and in the deduction there-

from".^- It appears, therefore, that Archimedes had con-

sidered the question of the length of the year. Macrobius

says that he discovered the distances of the planets.
Archimedes himself describes in the Sandreckoner the

apparatus by which he measured the apparent diameter

of the sun, i.e. the angle subtended by it at the eye.
1CThe story that he set the Roman ships on fire by an

arrangement of burning-glasses or concave mirrors is not

found in any authority earlier than Lucian (second cen-

tury A.D.); but there is no improbability in the idea

that he discovered some form of burning-mirror, e.g.

a paraboloid of revolution, which would reflect to one

point all rays falling on its concave surface in a direction

parallel to its axis.



CHAPTER II.

GREEK GEOMETRY TO ARCHIMEDES".

IN order to enable the reader to arrive at a correct

understanding of the place of Archimedes and of the

significance of his work it is necessary to pass in review

the course of development of Greek geometry from its

first beginnings down to the time of Euclid and
Archimedes,

jj^

Greek authors from Herodotus downwards agree in

saying that geometry was invented by the Egyptians
and that it came into Greece from Egypt. One account

says:

T" Geometry is said by many to have been invented

among the Egyptians,! its origin being due to the

measurement of plots oT land. This was necessary there

because of the rising of the Nile, which obliterated the

boundaries appertaining to separate owners. Nor is it

marvellous that the discovery of this and the other

sciences should have arisen from such an occasion, since

everything which moves in the sense of development
will advance from the imperfect to the perfect. From

sense-perception to reasoning, and from reasoning to

understanding, is a natural transition. Just as among
the Phoenicians, through commerce and exchange, an

accurate knowledge of numbers was originated, so also

among the Egyptians geometry was invented for the

reason above stated.

," Thales first went to Egypt and thence .introduced

this study into Greece.V

(7)
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But it is clear that the geometry of the Egyptians was
almost entirely practical and did not go beyond the

requirements of the land-surveyor, farmer or merchant.

They did indeed know, as far back as 2000 B.C., that in a

triangle which has its sides proportional to 3, 4, 5 the

angle contained by the two smaller sides is a right angle,
and they used such a triangle as a practical means of

drawing right angles. They had formulae, more or less

inaccurate, for certain measurements, e.g. for the areas of

certain triangles, parallel-trapezia, and circles. They had,

further, in their construction of pyramids, to use the

notion of similar right-angled triangles ; they even had a

name, se-qety
for the ratio of the half of the side of the

base to the height, that is, for what we should call the

co-tangent of the angle of slope. But not a single general
theorem in geometry can be traced to the Egyptians.
Their knowledge that the triangle (3, 4, 5) is right

angled is far from implying any knowledge of the general

proposition (Eucl. I., 47) known by the name of Pytha-

goras. The science of geometry, in fact, remained to be

discovered
;
and this required the genius for pure specula-

tion which the Greeks possessed in the largest measure

among all the nations of the worlo^i

Inhales,
who had travelled in Egypt and there learnt

what the priests could teach him on the subject, intro-

duced geometry into Greece.^ Almost the whole of

Greek science and philosophy begins with Thales. His

date was about 624-547 B.C. First of the Ionian

philosophers, and declared one of the Seven Wise Men
in 582-581, he shone in all fields, as astronomer, mathe-

matician, engineer, statesman and man of business. In

astronomy he predicted the solar eclipse of 28 May, 585,
discovered the inequality of the four astronomical seasons,

and counselled the use of the Little Bear instead of the

Great Bear as a means of finding the pole. In geometry
the following theorems are attributed to him and their

character shows how the Greeks had to begin at the very
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beginning of the theory (i) that a circle is bisected by
any diameter (Eucl. I., Def. 17), (2) that the angles at

the base of an isosceles triangle are equal (Eucl. I., 5),

(3) that, if two straight lines cut one another, the

vertically opposite angles are equal (Eucl. L, 15), (4)

that, if two triangles have two angles and one side

respectively equal, the triangles are equal in all respects

(Eucl. L, 26). He is said (5) to have been the first to

inscribe a right-angled triangle in a circle : which must
mean that he was the first to discover that the angle in a

semicircle is a right angle; He also solved two problems
in practical geometry: (i) he showed how to measure
the distance from the land of a ship at sea (for this he is

said to have used the proposition numbered (4) above),
and (2) he measured the heights of pyramids by means
of the shadow thrown on the ground (this implies the use

of similar triangles in the way that the Egyptians had
usedthem in the construction of pyramids).

plter Thales come the Pythagoreans. We are told

that the Pythagoreans were the first to use the term

paOrf/jLara (literally
"
subjects of instruction ") in the

specialised sense of " mathematics "
; they, too, first

advanced mathematics as a study pursued for its

own sake and made it a part of a liberal education.

Pythagoras, son of Mnesarchus, was born in Samos
about 572 B.C., and died at a great age (75 or 80) at

Metapontum. His interests were as various as those of
Thales

;
his travels, all undertaken in pursuit of know-

ledge, were probably even more extended. Like Thales,
and perhaps at his suggestion, he visited Egypt and
studied there for a long period (22 years, some sayJ^J

It is difficult to disentangle from the body, of

Pythagorean doctrines the portions which are due to

Pythagoras himself because of the habit which the

members of the school had of attributing everything to

the Master (avrbv fya, ipse dixif). In astronomy two

things at least may safely be attributed to him
; he held



io ARCHIMEDES

that the earth is spherical in shape, and he recognised
that the sun, moon and planets have an independent
motion of their own in a direction contrary to that of

the daily rotation ;
he seems, however, to have adhered

to the geocentric view of the universe, and it was his

successors who evolved the theory that the earth does not

remain at the centre but revolves, like the other planets
and the sun and moon, about the " central fire ". Per-

haps his most remarkable discovery was the dependence
of the musical intervals on the lengths of vibrating

strings, the proportion for the octave being 2 : i, for the

fifth 3 : 2 and for the fourth 4:3. In arithmetic he

was the first to expound the theory of means and of pro-

portion as applied to commensurable quantities. He laid

the foundation of the theory of numbers by considering
the properties of numbers as such, namely, prime
numbers, odd and even numbers, etc. By means of

figured numbers, square, oblong, triangular, etc. (repre-

sented by dots arranged in the form of the various

figures) he showed the connexion between numbers and

geometry. In view of all these properties of numbers,
we can easily understand how the Pythagoreans ,came
to " liken all things to numbers

"
and to find in the

principles of numbers the principles of all things ("all

things are numbers "
).

We come now to Pythagoras's achievements in

geometry. There is a story that, when he came home
from Egypt and tried to found a school at Samos, he

found the Samians indifferent, so that he had to take

special measures to ensure that his geometry might not

perish with him. Going to the gymnasium, he sought
out a well-favoured youth who seemed likely to suit his

purpose, and was withal poor, and bribed him to learn

geometry by promising him sixpence for every proposition
that he mastered. Very soon the youth got fascinated

by the subject for its own sake, and Pythagoras rightly

judged that he would gladly go on without the sixpence.
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He hinted, therefore, that he himself was poor and must

try to earn his living instead of doing mathematics
;

whereupon the youth, rather than give up the study,
volunteered to pay sixpence to Pythagoras for each

proposition.

JTTT geometry Pythagoras set himself to lay the founda-

tions of the subject, beginning with certain important
definitions and investigating the fundamental principles.

Of propositions attributed to him the most famous is, of

course, the theorem that in a right-angled triangle the

square on the hypotenuse is equal to the sum of the

squares on the sides about the right anglei(Eucl. I.,

47) ; and, seeing that Greek tradition universally credits

him with the proof of this theorem, we prefer to believe

that tradition is right. This is to some extent confirmed

by another tradition that Pythagoras discovered a general
formula for finding two numbers such that the sum of

their squares is a square number. This depends on the

theory of the gnomon, which at first had an arithmetical

signification corresponding to the geometrical use of it

in Euclid, Book II. A figure in the shape of a gnomon
put round two sides of a square makes it into a larger

square. Now consider the number I represented by a

dot. Round this place three other dots so that the four

dots form a square (l + 3 = 2 2

).
Round the four dots

(on two adjacent sides of the square) place five dots at

regular and equal distances, and we have another square

(i + 3 + 5 = 3
2
); and so on. The successive odd numbers

I, 3, 5 . . . were called gnomons, and the general formula is

i + 3 + 5 + . . . + (2
-

i)
= 2

.

Add the next odd number, i.e. 2+ I, and we have

n* + (2n + i)
= (n + i)

2
. In order, then, to get two

square numbers such that their sum is a square we have

only to see that 2n + I is a square. Suppose that 2n + i

= m*
;
then n = \(m*

-
i), and we have {|(w

2 -
i)}

2 + m*
=

{i (w
2 + i )}

2
,
where m is any odd number

;
and this is

the general formula attributed to Pythagoras.
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Proclus also attributes to Pythagoras the theory of

proportionals and the construction of the five
" cosmic

figures," the five regular solids.

One of the said solids, the dodecahedron, has twelve

pentagonal faces, and the construction of a regular penta-

gon involves the cutting of a straight line
"
in extreme

and mean ratio" (Eucl. II., II, and VI., 30), which is a

particular case of the method known as the application of
areas. How much of this was due to Pythagoras him-

self we do not know
;
but the whole method was at all

events fully worked out by the Pythagoreans and proved
one of the most powerful of geometrical methods. The
most elementary case appears in Euclid, I., 44, 45, where
it is shown how to apply to a given straight line as base

a parallelogram, having a given angle (say a rectangle)
and equal in area to any rectilineal figure ;

this construc-

tion is the geometrical equivalent of arithmetical division.

The general case is that in which the parallelogram,

though applied to the straight line, overlaps it or falls

short of it in such a way that the part of the parallelo-

gram which extends beyond, or falls short of, the paral-

lelogram of the same angle and breadth on the given

straight line itself (exactly) as base is similar to another

given parallelogram (Eucl. VI., 28, 29). This is the

geometrical equivalent of the most general form of

quadratic equation ax mx2 = C, so far as it has real

roots
;
while the condition that the roots may be real

was also worked out (
= Eucl. VI., 27). It is important

to note that this method of application of areas was

directly used by Apollonius of Perga in formulating the

fundamental properties of the three conic sections, which

properties correspond to the equations of the conies in

Cartesian co-ordinates
;
and the names given by Apollo-

nius (for the first time) to the respective conies are taken

from the theory, parabola (Trapaftokrj) meaning
"
applica-

tion
"

(i.e. in this case the parallelogram is applied to the

straight line exactly), hyperbola (vTrepftoKrj), "exceeding"
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(i.e. in this case the parallelogram exceeds or overlaps
the straight line), ellipse (eXXen/a?), ''falling short" (i.e.

the parallelogram falls short of the straight line).

Another problem solved by the Pythagoreans is that

of drawing a rectilineal figure equal in area to one given
rectilineal figure and similar to another. Plutarch

mentions a doubt as to whether it was this problem or

the proposition of Euclid I., 47, on the strength of which

Pythagoras was said to have sacrificed an ox.

The main particular applications of the theorem of

the square on the hypotenuse (e.g. those in Euclid, Book

II.) were also Pythagorean ;
the construction of a square

equal to a given rectangle (Eucl. II., 14) is one of them
and corresponds to the solution of the pure quadratic

equation X* = ab.

The Pythagoreans proved the theorem that the sum
of the angles of any triangle is equal to two right

angles (Eucl. I., 32).

Speaking generally, we may say that the Pythagorean
geometry covered the bulk of the subject-matter of

Books L, II., IV., and VI. of Euclid (with the qualifica-

tion, as regards Book VI., that the Pythagorean theory
of proportion applied only to commensurable magnitudes).
Our information about the origin ot the propositions of

Euclid, Book III., is not so complete; but it is certain

that the most important of them were well known to

Hippocrates of Chios (who flourished in the second half of

the fifth century, and lived perhaps from about 470 to

400 B.C.), whence we conclude that the main propositions
of Book III. were also included in the Pythagorean
geometry.

Lastly, the Pythagoreans discovered the existence of

incommensurable lines, or of irrationals. This was,

doubtless, first discovered with reference to the diagonal
of a square which is incommensurable with the side,

being in the ratio to it of J2 to I. The Pythagorean
proot of this particular case survives in Aristotle and in
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a proposition interpolated in Euclid's Book X.
;

it is by
a reductio ad absurdum proving that, if the diagonal is

commensurable with the side, the same number must be

both odd and even. This discovery of the incommen-

surable was bound to cause geometers a great shock,

because it showed that the theory of proportion invented

by Pythagoras was not of universal application, and

therefore that propositions proved by means of it were

not really established Hence the stories that the dis-

covery of the irrational was for a time kept secret, and

that the first person who divulged it perished by shipwreck.
The fatal flaw thus revealed in the body of geometry
was not removed till Eudoxus (408-355 B.C.) discovered

the great theory of proportion (expounded in Euclid's

Book V.), which is applicable to incommensurable as

well as to commensurable magnitudes.

By the time of Hippocrates of Chios the scope of

Greek geometry was no longer even limited to the Ele-

ments
;

certain special problems were also attacked

which were beyond the power of the geometry of the

straight line and circle, and which were destined to play
a great part in determining the direction taken by Greek

geometry in its highest flights. The main problems in

question were three : (i) the doubling of the cube, (2) the

trisection of any angle, (3) the squaring of the circle
;

and from the time of Hippocrates onwards the investiga-

tion of these problems proceeded part passu with the

completion of the body of the Elements.

Hippocrates himself is an example of the concurrent

study of the two departments. On the one hand, he

was the first of the Greeks who is known to have com-

piled a book of Elements. This book, we may be sure,

contained in particular the most important propositions
about the circle included in Euclid, Book III. But a

much more important proposition is attributed to Hip-

pocrates ;
he is said to have been the first to prove that

circles are to one another as the squares on their dia-
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meters
(
= Eucl. XII., 2), with the deduction that similar

segments of circles are to one another as the squares on
their bases. These propositions were used by him in

his tract on the squaring of tunes, which was intended to

lead up to the squaring of the circle. The latter problem
is one which must have exercised practical geometers
from time immemorial. Anaxagoras for instance (about

500-428 B.C.) is said to have worked at the problem
while in prison. The essential portions of Hippocrates's
tract are preserved in a passage of Simplicius (on Aris-

totle's Physics), which contains substantial fragments
from Eudemus's History of Geometry. Hippocrates
showed how to square three particular lunes of different

forms, and then, lastly, he squared the sum of a certain

circle and a certain lune. Unfortunately, however, the

last-mentioned lune was not one of those which can be

squared, and so the attempt to square the circle in this

way failed after all.

Hippocrates also attacked the problem of doubling
the cube. There are two versions of the origin of this

famous problem. According to one of them, an old

tragic poet represented Minos as having been dissatisfied

with the size of a tomb erected for his son Glaucus, and

having told the architect to make it double the size, re-

taining, however, the cubical form. According to the

other, the Delians, suffering from a pestilence, were told

by the oracle to double a certain cubical altar as a means
of staying the plague. Hippocrates did not, indeed,

solve the problem, but he succeeded in reducing it to

another, namely, the problem of rinding two mean pro-

portionals in continued proportion between two given

straight lines, i.e. finding x> y such that a : x = x\y =

y : b
y
where a, b are the two given straight lines. It is

easy to see that, \ia \ x x\ y y\b, then bja = (xjaf,

and, as a particular case, if b = 20, x* = 203
,
so that the

side of the cube which is double of the cube of side a

is found.
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The problem of doubling the cube was henceforth

tried exclusively in the form of the problem of the two

mean proportionals. Two significant early solutions are

on record.

(
i
) Archytas of Tarentum (who flourished in first half of

fourth century B.C.) found the two mean proportionals by
a very striking construction in three dimensions, which

shows that solid geometry, in the hands of Archytas at

least, was already well advanced. The construction was

usually called mechanical, which it no doubt was in form,

though in reality it was in the highest degree theoretical.

It consisted in determining a point in space as the inter-

section of three surfaces : (a) a cylinder, (b) a cone, (c)

an "
anchor-ring

"
with internal radius = o. (2) Menaech-

mus, a pupil of Eudoxus, and a contemporary of Plato,

found the two mean proportionals by means of conic

sections, in two ways, (a) by the intersection of two para-

bolas, the equations of which in Cartesian co-ordinates

would be x1 = qy,y
z =

bx, and (/3) by the intersection

of a parabola and a rectangular hyperbola, the corre-

sponding equations being x" = ayt
and xy = ab respec-

tively. It would appear that it was in the effort to solve

this problem that Menaechmus discovered the conic

sections, which are called, in an epigram by Eratosthenes,
" the triads of Menaechmus ".

The trisection of an angle was effected by means of a

curve discovered by Hippias of Elis, the sophist, a con-

temporary of Hippocrates as well as of Democritus and

Socrates (470-399 B.C.). The curve was called the

quadratrix because it also served (in the hands, as we
are told, of Dinostratus, brother of Menaechmus, and of

Nicomedes) for squaring the circle. It was theoretically

constructed as the locus of the point of intersection of two

straight lines moving at uniform speeds and in the same

time, one motion being angular and the other rectilinear.

Suppose OA, OB are two radii of a circle at right angles
to one another. Tangents to the circle at A and B,
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meeting at C, form with the two radii the square OACB.
The radius OA is made to move uniformly about O, the

centre^ so as to describe the angle AOB in a certain

time. Simultaneously AC moves parallel to itself at

uniform speed such that A just describes the line AO
in the same length of time. The intersection of the

moving radius and AC in their various positions traces

out the quadratrix.
The rest of the geometry which concerns us was mostly

th? work of a few men, Democritus of Abdera, Theodorus
of Cyrene (the mathematical teacher of Plato), Theaetetus,

Eudoxus, and Euclid. The actual writers of Elements
of whom we hear were the following. Leon, a little

younger than Eudoxus (408-355 B.C.), was the author

of a collection of propositions more numerous and
more serviceable than those collected by Hippocrates.
Theudius of Magnesia, a contemporary of Menaech-

mus and Dinostratus,
"
put together the elements ad-

mirably, making many partial or limited propositions
more general ". Theudius's book was no doubt the

geometrical text-book of the Academy and that used by
Aristotle.

Theodorus of Cyrene and Theaetetus generalised the

theory of irrationals, and we may safely conclude that a

great part of the substance of Euclid's Book X. (on

irrationals) was due to Theaetetus. Theaetetus also wrote

on the five regular solids (the tetrahedron, cube, octa-

hedron, dodecahedron, and icosahedron), and Euclid

was therefore no doubt equally indebted to Theaetetus

for the contents of his Book XIII. In the matter of

Book XII. Eudoxus was the pioneer. These facts are

confirmed by the remark of Proclus that Euclid, in com-

piling his Elements, collected many of the theorems of

Eudoxus, perfected many others by Theaetetus, and

brought to irrefragable demonstration the propositions
which had only been somewhat loosely proved by his pre-

decessors,
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Eudoxus (about 408-355 B.C.) was perhaps the greatest
of all Archimedes's predecessors, and it is his achieve-

ments, especially the discovery of the method of exhaus-

tion, which interest us in connexion with Archimedes.

In astronomy Eudoxus is famous for the beautiful

theory of concentric spheres which he invented to explain
the apparent motions of the planets, and, particularly,

their apparent stationary points and retrogradations.
The theory applied also to the sun and moon, for which

Eudoxus required only three spheres in each case. He
represented the motion of each planet as compounded
of the rotations of four interconnected spheres about

diameters, all of which pass through the centre of the

earth. The outermost sphere represents the daily rota-

tion, the second a motion along the zodiac circle or

ecliptic ;
the poles of the third sphere, about which that

sphere revolves, are fixed at two opposite points on the

zodiac circle, and are carried round in the motion of the

second sphere ;
and on the surface of the third sphere

the poles of the fourth sphere are fixed; the fourth

sphere, revolving about the diameter joining its two

poles, carries the planet which is fixed at a point on its

equator. The poles and the speeds and directions of

rotation are so chosen that the planet actually describes

a hippopede, or horse-fetter, as it was called (i.e. a figure of

eight), which lies along and is longitudinally bisected by
the zodiac circle, and is carried round that circle. As
a tour de force of geometrical imagination it would be

difficult to parallel this hypothesis.
In geometry Eudoxus discovered the great theory of

proportion, applicable to incommensurable as well as com-
mensurable magnitudes, which is expounded in Euclid,
Book V., and which still holds its own and will do so for

all time. He also solved the problem of the two mean

proportionals by means of certain curves, the nature of

which, in the absence of any description of them in our

sources, can only be conjectured.
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Last of all, and most important for our purpose, is his

use of the famous method of exhaustion for the measure-

ment of the areas of curves and the volumes of solids.

The example of this method which will be most familiar

to the reader is the proof in Euclid XII.
, 2, of the theorem

that the areas of circles are to one another as the squares
on their diameters. The proof in this and in all cases

depends on a lemma which forms Prop. I of Euclid's

Book X. to the effect that, if there are two unequal

magnitudes of the same kind and from the greater you
subtract not less than its half, then from the remainder

not less than its half, and so on continually, you will at

length have remaining a magnitude less than the lesser

of the two magnitudes set out, however small it is.

Archimedes says that the theorem of Euclid XII, 2, was

proved by means of a certain lemma to the effect that, if

we have two unequal magnitudes (i.e. lines, surfaces, or

solids respectively), the greater exceeds the lesser by
such a magnitude as is capable, if added continually to

itself, of exceeding any magnitude of the same kind as

the original magnitudes. This assumption is known as

the Axiom or Postulate of Archimedes, though, as he

states, it was assumed before his time by those who
used the method of exhaustion. It is in reality used

in Euclid's lemma (Eucl. X., i) on which Euclid

XII., 2, depends, and only differs in statement from

Def. 4 of Euclid, Book V., which is no doubt due to

Eudoxus.
The method of exhaustion was not discovered all at

once
;
we find traces of gropings after such a method

before it was actually evolved. It was perhaps Antiphon,
the sophist, of Athens, a contemporary of Socrates (470-

399 B.C.), who took the first step. He inscribed a square

(or, according to another account, an equilateral triangle)

in a circle, then bisected the arcs subtended by the sides,

and so inscribed a polygon of double the number of

sides ;
he then repeated the process, and maintained that,
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by continuing it, we should at last arrive at a polygon
with sides so small as to make the polygon coincident,

with the circle. Though this was formally incorrect, it

nevertheless contained the germ of the method of ex-

haustion.

Hippocrates, as we have seen, is said to have proved
the theorem that circles are to one another as the squares
on their diameters, and it is difficult to see how he could

have done this except by some form, or anticipation, of

the method. There is, however, no doubt about the

part taken by Eudoxus
;
he not only based the method

on rigorous demonstration by means of the lemma or

lemmas aforesaid, but he actually applied the method to

find the volumes (i) of any pyramid, (2) of the cone,

proving (i) that any pyramid is one third part of the

prism which has the same base and equal height, and (2)
that any cone is one third part of the cylinder which has

the same base and equal height. Archimedes, however,
tells us the remarkable fact that these two theorems
were first discovered by Democritus (who flourished

towards the end of the fifth century B.C.), though he was
not able to prove them (which no doubt means, not that

he gave no sort of proof, but that he was not able

to establish the propositions by the rigorous method
of E'idoxus). Archimedes adds that we must give no
small share of the credit for these theorems to Demo-
critus

;
and this is another testimony to the marvellous

powers, in mathematics as well as in other subjects,
of the great man who, in the words of Aristotle,
"seems to have thought of everything". We know
from other sources that Democritus wrote on irrationals

;

he is also said to have discussed the question of two

parallel sections of a cone (which were evidently sup-

posed to be indefinitely close together), asking whether
we are to regard them as unequal or equal :

"
for if

they are unequal they will make the cone irregular as

having many indentations, like steps, and unevennesses,
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but, if they are equal, the cone will appear to have the

property of the cylinder and to be made up of equal,
not unequal, circles, which is very absurd ". This ex-

planation shows that Democritus was already close on
the track of infinitesimals.

Archimedes says further that the theorem that spheres
are in the triplicate ratio of their diameters was proved
by means of the same lemma, The proofs of the proposi-
tions about the volumes of pyramids, cones and spheres
are, of course, contained in Euclid, Book XII. (Props.

3-7 Cor., 10, 1 6- 1 8 respectively).
It is no doubt desirable to illustrate Eudoxus's

method by one example. We will take one of the sim-

plest, the proposition (Eucl. XI I.
, 10) about the cone.

Given ABCD, the circular base of the cylinder which
has the same base as the cone and equal height, we in-

scribe the square ABCD ;
we then bisect the arcs sub-

tended by the sides, and draw the regular inscribed

polygon of eight sides, then similarly we draw the

regular inscribed polygon of sixteen sides, and so on.

We erect on each regular polygon the prism which has

the polygon for base, thereby obtaining successive prisms
inscribed in the cylinder, and of the same height with it

Each time we double the number of sides in the base of

the prism we take away more than half of the volume

by which the cylinder exceeds the prism (since we take

away more than half of the excess of the area of the

circular base over that of the inscribed polygon, as in

Euclid XII., 2). Suppose now that V is the volume
of the cone, C that of the cylinder. We have to prove
that C = 3V. If C is not equal to sV, it is either

greater or less than 3V.

Suppose (I) that C> 3V, and that C = 3V + E.

Continue the construction of prisms inscribed in the

cylinder until the parts of the cylinder left over outside

the final prism (of volume P) are together less than E.
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Then C - P < E.

But C - 3V = E
;

Therefore P>3V.
But it has been proved in earlier propositions that P is

equal to three times the pyramid with the same base as

the prism and equal height.
Therefore that pyramid is greater than V, the volume

of the cone : which is impossible, since the cone encloses

the pyramid.
Therefore C is not greater than 3V.
Next (2) suppose that C < 3V, so that, inversely,

This time we inscribe successive pyramids in the cone
until we arrive at a pyramid such that the portions of

the cone left over outside it are together less than the

excess of V over - C. It follows that the pyramid is

greater than - C. Hence the prism on the same base as

the pyramid and inscribed in the cylinder (which prism is

three times the pyramid) is greater than C : which is

impossible, since the prism is enclosed by the cylinder,
and is therefore less than it.

Therefore V is not greater than -
C, or C is not less

than 3V.

Accordingly C, being neither greater nor less than 3V,

must be equal to it
;
that is, V = - C.

It only remains to add that Archimedes is fully ac-

quainted with the main properties of the conic sections.

These had already been proved in earlier treatises, which
Archimedes refers to as the " Elements of Conies ". We
know of two such treatises, (i) Euclid's four Books on
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Conies, (2) a work by one Aristaeus called
" Solid Loci,"

probably a treatise on conies regarded as loci. Both
these treatises are lost

;
the former was, of course, super-

seded by Apollonius's great work on Conies in eight
Books.



CHAPTER II!.

THE WORKS OF ARCHIMEDES. IVV> *V

THE range of Archimedes's writings will be gathered
from the list of his various treatises. An extraordinarily

large proportion of their contents represents entirely new
discoveries of his own. pie was no compiler or writer of

text-books, and in this respect he differs from Euclid and

Apollonius, whose work largely consisted in systematis-

ing and generalising the methods used and the results

obtained by earlier geometers. There is in Archimedes
no mere working-up of existing material

;
his objective

is always something new, some definite addition to the

sum of knowledge. J Confirmation of this is found in the

introductory letters prefixed to most of his treatises. In

them we see the directness, simplicity and humanity of

the man. There is full and generous recognition of the

work of predecessors and contemporaries ;
his estimate

of the relation of his own discoveries to theirs is obviously
just and free from any shade of egoism. ^His manner is

to state what particular discoveries made by his prede-
cessors had suggested to him the possibility of extending
them in new directions

;
thus he says that, in connexion

with the efforts of earlier geometers to square the circle,

it occurred to him that no one had tried to square a para-
bolic segment ;

he accordingly attempted the problem
and finally solved it. Similarly he describes his dis-

coveries about the volumes and surfaces of spheres and

cylinders as supplementing the theorems of Kudoxus
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about the pyramid, the cone and the cylinder^ He does
not hesitate to say that certain problems baffled him for

a long time
;

in one place he positively insists, for the

purpose of pointing a moral, on specifying two propo-
sitions which he had enunciated but which on further in-

vestigation proved to be wrong.
The ordinary MSS. of the Greek text of Archimedes

give his works in the following order :

1. On the Sphere and Cylinder (two books).
2. Measurement of a Circle.

3. On Conoids and Spheroids.

4. On Spirals.

5. On Plane Equilibriums (two books).
6. The Sandreckoner.

7. Quadrature of a Parabola.

A most important addition to this list has been made
in recent years through an extraordinary piece of good
fortune. In 1906 J. L. Heiberg, the most recent editor

of the text of Archimedes, discovered a palimpsest of

mathematical content in the "
Jerusalemic Library

"
of

one Papadopoulos Kerameus at Constantinople. This

proved to contain writings of Archimedes copied in

a good hand of the tenth century. An attempt had been
made (fortunately with only partial success) to wash out

the old writing, and then the parchment was used again
to write a Euchologion upon. However, on most of the

leaves the earlier writing remains more or less legible.

The important fact about the MS. is that it contains,
besides substantial portions of the treatises previously

known, (i) a considerable portion of the work, in two

books, On Floating Bodies^ which was formerly supposed
to have been lost in Greek and only to have survived in

the translation by Wilhelm of Morbeke, and (2) most

precious of all, the greater part of the book called The

Method^ treating of Mechanical Problems and addressed

to Eratosthenes. The important treatise so happily
recovered is now included in Heiberg's new (second)
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edition of the Greek text of Archimedes (Teubner,

1910-15), and some account of it will be given in the

next chapter.
Tine order in which the treatises appear in the MSS.

was not the order of composition ;
but from the various

prefaces and from internal evidence generally we are able

to establish the following as being approximately the

chronological sequence :

1. On Plane Equilibriums, I.

2. Quadrature ofa Parabola.

3. On Plane Equilibriums',
II.

4. The Met/iod.

5. On the Sphere and Cylinder, I, II.

6. On Spirals.

7. On Conoids and Spheroids.
8. On Floating Bodies, I, II.

9. Measurement of a Circle.

10. The Sandreckoner.

In addition to the above we have a collection of

geometrical propositions which has reached us through
the Arabic with the title

" Liber assumptorum Archi-

medis". They were not written by Archimedes in their

present form, but were probably collected by some later

Greek writer for the purpose of illustrating some ancient

work. It is, however, quite likely that some of the pro-

positions, which are remarkably elegant, were of Archi-

medean origin, notably those concerning the geometrical

figures made with three and four semicircles respectively
and called (from their shape) (i) the shoemaker s knife
and (2) the Salinon or salt-cellar, and another theorem
which bears on the trisection of an angle.
An interesting fact which we now know from Arabian

sources is that the formula for the area of any triangle
in terms of its sides which we write in the form

and which was supposed to be Heron's because Heron

gives the geometrical proof of it, was really due to

Archimedes.



THE WORKS OF ARCHIMEDES 27

Archimedes is further credited with the authorship of

the famous Cattle-Problem enunciated in a Greek epi- l

gram edited by Lessmg in 1773. According to its

heading the problem was communicated by Archimedes

to the mathematicians at Alexandria in a letter to

Eratosthenes
;
and a scholium to Plato's Charmides

speaks of the problem
" called by Archimedes the Cattle-

Problem ". It is an extraordinarily difficult problem in

indeterminate analysis, the solution of which involves

enormous figures.

,|
Of lost works of Archimedes the following can be

identified :

1. Investigations relating to polyhedra are referred to -
?

by Pappus, who, after speaking of the five regular solids,

gives a description of thirteen other polyhedra discovered

by Archimedes which are semi-regular, being contained

by polygons equilateral and equiangular but not similar.

One at least of these semi-regular solids was, however,

already known to Plato.

2. A book of arithmetical content entitled Principles

dealt, as we learn from Archimedes himself, with the

naming of numbers, and expounded a system of express-

ing large numbers which could not be written in the

ordinary Greek notation. In setting out the same system
in the Sandreckoner (see Chapter V. below), Archimedes

explains that he does so for the benefit of those who had

not seen the earlier work.

3. On Balances (or perhaps levers]. Pappus says that

in this work Archimedes proved that "greater circles

overpower lesser circles when they rotate about the same

centre ".

4. A book On Centres of Gravity is alluded to by Sim-

plicius. It is not, however, certain that this and the

last-mentioned work were separate treatises. Possibly

Book I. On Plane Equilibriums may have been part of a

larger work (called perhaps Elements of Mechanics], and

On Balances may have been an alternative title. The

J
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title On Centres of Gravity may be a loose way of referring
to the same treatise.

5. Catoptrica, an optical work from which Theon of

Alexandria quotes a remark about refraction.

6. On Sphere-making^ a mechanical work on the con-

struction of a sphere to represent the motions of the

heavenly bodies (cf. pp. 5-6 above).
Arabian writers attribute yet further works to Archi-

medes, (i) On the circle, (2) On a heptagon in a circle,

(3) On circles touching one another, (4) On parallel lines,

(5) On triangles, (6) On the properties of right-angled

triangles, (7) a book of Data ; but we have no con-

firmation of these statements.



CHAPTER IV.

GEOMETRY IN ARCHIMEDES.

THE famous French geometer, Chasles, drew an instruc-

tive distinction between the predominant features of the

geometry of the two great successors of Euclid, namely,
Archimedes and Apollonius of Perga (the "great geo-
meter," and author of the classical treatise on Conies).
The works of these two men may, says Chasles, be

regarded as the origin and basis of two great inquiries
which seem to share between them the domain of

geometry. Apollonius is concerned with the Geometry
of Forms and Situations^ while in Archimedes we find

the Geometry ofMeasurements> dealing with the quadrature
of curvilinear plane figures and with the quadrature and
cubature of curved surfaces, investigations which gave
birth to the calculus of the infinite conceived and brought
to perfection by Kepler, Cavalieri, Fermat, Leibniz and
Newton.

In geometry Archimedes stands, as it were, on the

shoulders of Eudoxus in that he applied the method of

exhaustion to new and more difficult cases of quadrature
and cubature. Further, in his use of the method he

introduced an interesting variation of the procedure as

we know it from Euclid. Euclid (and presumably
Eudoxus also) only used inscribed figures,

"
exhausting

"

the figure to be measured, and had to invert the second

half of the reductio ad absurdum to enable approximation
from below (so to speak) to be applied in that case also.

(29) 3
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)Archimedes, on the other hand, approximates from above

as well as from below
;
he approaches the area or volume

to be measured by taking closer and closer circumscribed

figures, as well as inscribed, and thereby compressing, as

it were, the inscribed and circumscribed figure into one,
so that they ultimately coincide with one another and

with the figure to be measured. But he follows the

cautious method to which the Greeks always adhered
;

he never says that a given curve or surface is the limiting

form of the inscribed or circumscribed figure ;
all that he

asserts is that we can approach the curve or surface as

nearly as we please.

The deductive form of proof by the method of exhaus-

tion is apt to obscure not only the way in which the

results were arrived at but also the real character of the

procedure followed. What Archimedes actually does in

certain cases is to perform what are seen, when the

analytical equivalents are set down, to be real integrations;
this remark applies to his investigation of the areas of a

parabolic segment and a spiral respectively, the surface

and volume respectively of a sphere and a segment of a

sphere, and the volume of any segments of the solids of

revolution of the second degree. The result is, as a rule,

only obtained after a long series of preliminary proposi-

tions, all of which are links in a chain of argument
elaborately forged for the one purpose. The method

suggests the tactics of some master of strategy who fore-

sees everything, eliminates everything not immediately
conducive to the execution of his plan, masters every

position in its order, and then suddenly (when the very
elaboration of the scheme has almost obscured, in the

mind of the onlooker, its ultimate object) strikes the final

blow. Thus we read in Archimedes proposition after

proposition the bearing of which is not immediately
obvious but which we find infallibly used later on

;
and

we are led on by such easy stages that the difficulty of

the original problem, as presented at the outset, is
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scarcely appreciated As Plutarch says, "It is not

possible to find in geometry more difficult and trouble-

some questions, or more simple and lucid explanations ".

But it is decidedly a rhetorical exaggeration when Plutarch

goes on to say that we are deceived by the easiness of

the successive steps into the belief that any one could

have discovered them for himself. On the contrary, the

studied simplicity and the perfect finish of the treatises in-

volve at the same time an element of mystery. Although
each step depends upon the preceding ones, we are left

in the dark as to how they were suggested to Archimedes.
There is, in fact, much truth in a remark of Wallis to the

effect that he seems "as it were of set purpose to have
covered up the traces of his investigation as if he had

grudged posterity the secret of his method of inquiry
while he wished to extort from them assent to his

results ".

A partial exception is now furnished by the Method ;

for here we have (as it were) a lifting of the veil and a

glimpse of the interior of Archimedes's workshop. He
tells us how he discovered certain theorems in quadrature
and cubature, and he is at the same time careful to insist

on the difference between (i) the means which may serve

to suggest the truth of theorems, although not furnishing
scientific proofs of them, and (2) the rigorous demon-
strations of them by approved geometrical methods
which must follow before they can be finally accepted as

established.

Writing to Eratosthenes he says: ''Seeing in you, as

I say, an earnest student, a man of considerable eminence -

in philosophy and an admirer of mathematical inquiry
when it comes your way, I have thought fit to write out

for you and explain in detail in the same book the

peculiarity of a certain method, which, when you see it,

will put you in possession of a means whereby you can

investigate some of the problems of mathematics by
mechanics. This procedure is, I am persuaded, no less
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useful for the proofs of the actual theorems as well. For

certain things which first became clear to me by a

mechanical method had afterwards to be demonstrated

by geometry, because their investigation by the said

method did not furnish an actual demonstration. But it

is of course easier, when we have previously acquired

by the method some knowledge of the questions, to

supply the proof than it is to find the proof without any

previous knowledge. This is a reason why, in the case

of the theorems the proof of which Eudoxus was the first

to discover, namely, that the cone is a third part of the

cylinder, and the pyramid a third part of the prism,

having the same base and equal height, we should give
no small share of the credit to Democritus, who was the

first to assert this truth with regard to the said figures,

though he did not prove it. I am myself in the position
of having made the discovery of the theorem now to be

published in the same way *as I made my earlier

discoveries
;
and I thought it desirable now to write out

and publish the method, partly because I have already

spoken of it and I do not want to be thought to have

uttered vain words, but partly also because I am
persuaded that it will be of no little service to mathe-

matics
;
for I apprehend that some, either of my

contemporaries or of my successors, will, by means of

the method when once established, be able to discover

other theorems in addition, which have not occurred to

me.
" First then I will set out the very first theorem which

became known to me by means of mechanics, namely,
that Any segment of a section of a right-angled cone [i.e.

a parabola] is four-thirds of the triangle which has the same
base and equal height ; and after this I will give each of

the other theorems investigated by the same method.

Then, at the end of the book., I will give the geometrical

proofs of the propositions."
The following description will, I hope, give an idea of
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the general features of the mechanical method employed
by Archimedes. Suppose that X is the plane or solid

figure the area or content of which is to be found. The
method in the simplest case is to weigh infinitesimal

elements of X against the corresponding elements of

another figure, B say, being such a figure that its area or

content and the position of its centre of gravity are

already known. The diameter or axis of the figure X
being drawn, the infinitesimal elements taken are parallel

sections of X in general, but not always, at right angles
to the axis or diameter, so that the centres of gravity of

all the sections lie at one point or other of the axis or

diameter and their weights can therefore be taken as

acting at the several points of the diameter or axis. In

the case of a plane figure the infinitesimal sections are

spoken of as parallel straight lines and in the case of a

solid figure as parallel planes, and the aggregate of the

infinite number of sections is said to make tip the whole

figure X. (Although the sections are so spoken of as

straight lines or planes, they are really indefinitely narrow

plane strips or indefinitely thin laminae respectively.)

The diameter or axis is produced in the direction away
from the figure to be measured, and the diameter or axis

as produced is imagined to be the bar or lever of a

balance. The object is now to apply all the separate

elements of X at one point on the lever, while the cor-

responding elements of the known figure B operate at

different points, namely, where they actually are in the

first instance. Archimedes contrives, therefore, to move
the elements of X away from their original position and

to concentrate them at one point on the lever, such that

each of the elements balances, about the point of sus-

pension of the lever, the corresponding element of B

acting at its centre of gravity. The elements of X and B

respectively balance about the point of suspension in

accordance with the property of the lever that the weights

are inversely proportional to the distances from the
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fulcrum or point of suspension. Now the centre of

gravity of B as a whole is known, and it may then be

supposed to act as one mass at its centre of gravity.

(Archimedes assumes as known that the sum of the
"
moments," as we call them, of all the elements of the

figure B, acting severally at the points where they actually

are, is equal to the moment of the whole figure applied
as one mass at one point, its centre of gravity.) More-
over all the elements of X are concentrated at the one
fixed point on the bar or lever. If this fixed point is H,
and G is the centre of gravity of the figure B, while C is

the point of suspension,
X : B = CG : CH.

Thus the area or content of X is found.

Conversely, the method can be used to find the centre

of gravity of X when its area or volume is known before-

hand. In this case the elements of X, and X itself, have
to be applied where they are, and the elements of the

known figure or figures have to be applied at the one
fixed point H on the other side of C, and since X, B and
CH are known, the proportion

B : X = CG : CH
determines CG, where G is the centre of gravity of X.
The mechanical method is used for finding (i) the area

of any parabolic segment, (2) the volume of a sphere and
a spheroid, (3) the volume of a segment of a sphere and
the volume of a right segment of each of the three coni-

coids of revolution, (4) the centre of gravity (a) of a

hemisphere, (&) of any segment of a sphere, (c) of any
right segment of a spheroid and a paraboloid of revolu-

tion, and (d) of a half-cylinder, or, in other words, of a

semicircle.

Archimedes then proceeds to find the volumes of two
solid figures, which are the special subject of the treatise.

The solids arise as follows :

(i) Given a cylinder inscribed in a rectangular parallel-

epiped on a square base in such a way that the two
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bases of the cylinder are circles inscribed in the opposite

square faces, suppose a plane drawn through one side

ot the square containing one base of the cylinder and

through the parallel diameter of the opposite base of the

cylinder. The plane cuts off a solid with a surface re-

sembling that of a horse's hoof. Archimedes proves that

the volume of the solid so cut off is one sixth part of the

volume of the parallelepiped.

(2) A cylinder is inscribed in a cube in such a way
that the bases ot the cylinder are circles inscribed in two

oppo ite square faces. Another cylinder is inscribed

which is similarly related to another pair of opposite
faces. The two cylinders include between them a solid

with all its angles rounded off; and Archimedes proves
that the volume of this solid is two-thirds of that of the

cube.

Having proved these facts by the mechanical method,
Archimedes concluded the treatise with a rigorous geo-
metrical proof of both propositions by the method of

exhaustion. The MS. is unfortunately jomewhat muti-

lated at the end, so that a certain amount of restoration

is necessary.
I shall now attempt to give a short account of the

other treatises of Archimedes in the order in which they

appear in the editions. The first is

On the Sphere and Cylinder.

Book I. begins with a preface addressed to Dositheus

(a pupil of Conon), which reminds him that on a former

occasion he had communicated to him the treatise proving
that any segment of a ''section of a right-angled cone"

(i.e. a parabola) is four-thirds of the triangle with the same

base and height, and adds that he is now sending the

proofs of certain theorems which he has since discovered,

and which seem to him to be worthy of comparison with

Eudoxus's propositions about the volumes of a pyramid
and a cone. The theorems are (i) that the surface of a
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sphere is equal to four times its greatest circle (i.e. what
we call a "great circle" of the sphere); (2) that the sur-

face of any segment of a sphere is equal to a circle with

radius equal to the straight line drawn from the vertex

of the segment to a point on the circle which is the base

of the segment ; (3) that, if we have a cylinder circum-

scribed to a sphere and with height equal to the diameter,

then (a) the volume of the cylinder is i times that of

the sphere and () the surface of the cylinder, including
its bases, is !- times the surface of the sphere.
Next come a few definitions, followed by certain As-

sumptions, two of which are well known, namely :

1. Of all lines which have the same extremities the

straight line is the least (this has been made the basis of

an alternative definition of a straight line).

2. Of unequal lines
> unequal surfaces and unequal

solids the greater exceeds the less by such a magnitude as,

when (continually} added to itself, can be made to exceed

any assigned magnitude among those which are comparable

[with it and\ with one another (i.e. are of the same kind).
This is the Postulate of Archimedes.
He also assumes that, of pairs of lines (including broken

lines) and pairs of surfaces, concave in the same direction

and bounded by the same extremities, the outer is greater
than the inner. These assumptions are fundamental to

his investigation, which proceeds throughout by means
of figures inscribed and circumscribed to the curved lines

or surfaces that have to be measured.

After some preliminary propositions Archimedes finds

(Props. 13, i_4) the area of the surfaces (i) of a right

cylinder,~(2) of a right cone. Then, after quoting certain

Euclidean propositions about cones and cylinders, he

passes to the main business of the book, the measure-

ment of the volume and surface of a sphere and a segment
of a sphere. By circumscribing and inscribing to a great
circle a regular polygon of an even number of sides and

making it revolve about a diameter connecting two op-
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posite angular points he obtains solids of revolution

greater and less respectively than the sphere. In a

series of propositions he finds expressions for (a) the

surfaces, () the volumes, of the figures so inscribed and
circumscribed to the sphere. Next he proves (Prop. 32)
that, if the inscribed and circumscribed polygons which,

by their revolution, generate the figures are similar, the

surfaces of the figures are in the duplicate ratio, and their

volumes in the triplicate ratio, of their sides. Then he

proves that the surfaces and volumes of the inscribed and
circumscribed figures respectively are less and greater
than the surface and volume respectively to which the

main propositions declare the surface and volume of the

sphere to be equal (Props. 25, 27, 30, 31 Cor.). Ke
has now all the material for applying the method of ex-

haustion and so proves the main propositions about the

surface and volume of the sphere. The rest of the book

applies the same procedure to a segment of the sphere.
Surfaces of revolution are inscribed and circumscribed to

a segment less than a hemisphere, and the theorem about

the surface of the segment is finally proved in Prop. 42.

Prop. 43 deduces the surface of a segment greater than

a hemisphere. Prop. 44 gives the volume of the sector

of the sphere which includes any segment.
Book .0,' begins with the problem of finding a sphere

equal^m volume to a given cone or cylinder; this

requires the solution of the problem of the two mean pro-

portionals, which is accordingly assumed. Prop. 2 de-.

duces, by means of I., 44, an expression for the volume
of a segment of a sphere, and Props. 3, 4 solve the im-

portant problems of cutting a given sphere by a plane
so that (a) the surfaces, (b) the volumes, of the segments

may have to one another a given ratio. The solution of

the second problem (Prop. 4) is difficult. Archimedes

reduces it to the problem of dividing a straight line AB
into two parts at a point M such that

MB : (a given length)
=

(a given area) : AM2
.
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The solution of this problem with a determination of the

limits of possibility are given in a fragment by Archi-

medes, discovered and preserved for us by Eutocms in

his commentary on the book
; they are effected by means

of the points ot intersection of two conies, a parabola and
a rectangular hyperbola. Three problems of construc-

tion follow, the first two of which are to construct a seg-
ment of a sphere similar to one given segment, and

having (a) its volume, (b) its surface, equal to that of

another given segment of a sphere. The last two pro-

positions are interesting. Prop. 8 proves that, if V, V
be the volumes, arid S, S' the surfaces, of two segments
into which a sphere is divided by a plane, V and S be-

longing to the greater segment, then

S2 :S /2 >V: V>S* :S'a.

Prop. 9 proves that, of all segments of spheres which
have equal surfaces, the hemisphere is the greatest in

volume.

The Measurement of a Circle.

This treatise, in the form in which it has come down
to us, contains only three propositions ;

the second, being
an easy deduction from Props. I and 3, is out of place in

so far as it uses the result of Prop. 3.

In Prop. I Archimedes inscribes and circumscribes to

a circle a series of successive regular polygons, beginning
with a square, and continually doubling the number of

sides
;
he then proves in the orthodox manner by the

method of exhaustion that the area of the circle is equal
to that of a right-angled triangle, in which the perpen-
dicular is equal to the radius, and the base equal to

the circumference, of the circle. Prop. 3 is the

famous proposition in which Archimedes finds by
sheer calculation upper and lower arithmetical limits to
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the ratio of the circumference of a circle to its diameter,
or what we call TT

;
the result obtained is 3T>7r>3r?.

Archimedes inscribes and circumscribes successive regu-
lar polygons, beginning with hexagons, and doubling
the number of sides continually, until he arrives at inscribed

and circumscribed regular polygons with 96 sides
; seeing

then that the length of the circumference of the circle is in-

termediate between the perimeters of the two polygons,
he calculates the two perimeters in terms of the diameter
of the circle. His calculation is based on two close

approximations (an upper and a lower) to the value of

^3, that being the cotangent of the angle of 30, from
which he begins to work. He assumes as known that

~ < \/3 < ~
. In the text, as we have it, only the

results of the steps in the calculation are given, but they
involve the finding of approximations to the square roots

of several large numbers: thus 1172^ is given as the ap-

proximate value of 7(137394311), 3013! as that of

7(9082321) and i838T
9

T as that of 7(3380929). In this

way Archimedes arrives at -~ j as the ratio of the peri-

meter of the circumscribed polygon of 96 sides to the di-

ameter of the circle
;
this is the figure which he rounds up

into 34. The corresponding figure for the inscribed polygon

is
33

., which, he says, is > 3^?- This example shows
20171

how little the Greeks were embarrassed in arithmetical

calculations by their alphabetical system of numerals.

On Conoids and Spheroids.

The preface addressed to Dositheus shows, as we may
also infer from internal evidence, that the whole of this

book also was original. Archimedes first explains what

his conoids and spheroids are, and then, after each
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description, states the main results which it is the aim of

the treatise to prove. The conoids are two. The first

is the right-angled conoid, a name adapted from the old

name ("section of a right-angled cone") for a parabola ;

this conoid is therefore a paraboloid of revolution. The
second is the obtuse-angled conoid, which is a hyperboloid
of revolution described by the revolution of a hyperbola

(a
" section of an obtuse-angled cone ") about its trans-

verse axis. The spheroids are two, being the solids of

revolution described by the revolution of an ellipse (a

"section of an acute-angled cone") about (i) its major
axis and (2) its minor axis

;
the first is called the " ob-

long
"

(or oblate) spheroid, the second the "
flat

"
(or

prolate) spheroid. As the volumes of oblique segments
of conoids and spheroids are afterwards found in terms

of the volume of the conical figure with the base of the

segment as base and the vertex of the segment as vertex,
and as the said base is thus an elliptic section of an

oblique circular cone, Archimedes calls the conical figure

with an elliptic base a "segment of a cone" as distinct

from a " cone ".

As usual, a series of preliminary propositions is re-

quired. Archimedes first sums, in geometrical form,
certain series, including the arithmetical progression, a,

20, 3#, . . . na, and the series formed by the squares of

these terms (in other words the series I
2

,
2 2

, 3
2
,

. . .

2

) ;

these summations are required for the final addition of

an indefinite number of elements of each figure, which
amounts to an integration. Next come two properties
of conies (Prop. 3), then the determination by the method
of exhaustion of the area of an ellipse (Prop. 4). Three

propositions follow, the first two of which (Props. 7, 8)
show that the conical figure above referred to is really
a segment of an oblique circular cone

;
this is done by

actually finding the circular sections. Prop. 9 gives a

similar proof that each elliptic section of a conoid or

spheroid is a section of a certain oblique circular cylinder



GEOMETRY IN ARCHIMEDES 41

(with axis parallel to the axis of the segment of the

conoid or spheroid cut off by the said elliptic section).

Props. 1 1- 1 8 show the nature of the various sections

which cut off segments of each cono'id and spheroid and
which are circles or ellipses according as the section is

perpendicular or obliquely inclined to the axis of the

solid
; they include also certain properties of tangent

planes, etc.

The real business of the treatise begins with Props.

19, 20; here it is shown how, by drawing many plane
sections equidistant from one another and all parallel
to the base of the segment of the solid, and describing

cylinders (in general oblique) through each plane section

with generators parallel to the axis of the segment and
terminated by the contiguous sections on either side, we
can make figures circumscribed and inscribed to the seg-

ment, made up of segments of cylinders with parallel

faces and presenting the appearance of the steps of a

staircase. Adding the elements of the inscribed and
circumscribed figures respectively and using the method
of exhaustion, Archimedes finds the volumes of the re-

spective segments of the solids in the approved manner

(Props. 21, 22 for the paraboloid, Props. 25, 26 for the

hyperboloid, and Props. 27-30 for the spheroids). The
results are stated in this form: (i) Any segment of a

paraboloid of revolution is half as large again as the cone

or segment of a cone which has the same base and axis
;

(2) Any segment of a hyperboloid of revolution or of a

spheroid is to the cone or segment of a cone with the

same base and axis in the ratio ofAD + 3CA to AD + 2CA
in the case of the hyperboloid, and of 3CA - AD to

2CA- AD in the case of the spheroid, where C is the

centre, A the vertex of the segment, and AD the axis

of the segment (supposed in the case of the spheroid to

be not greater than half the spheroid).
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On Spirals.

The preface addressed to Dositheus is of some length
and contains, first, a tribute to the memory of Conon,
and next a summary of the theorems about the sphere
and the conoids and spheroids included in the above two
treatises. Archimedes then passes to the spiral which,
he says, presents another sort of problem, having nothing
in common with the foregoing. After a definition of the

spiral he enunciates the main propositions about it which

are to be proved in the treatise. The spiral (now known
as the Spiral of Archimedes) is defined as the locus of a

point starting from a given point (called the "
origin ")

on a given straight line and moving along the straight
line at uniform speed, while the line itself revolves at

uniform speed about the origin as a fixed point. Props.
I -I I are preliminary, the last two amounting to the sum-
mation of certain series required for the final addition

of an indefinite number of element-areas, which again
amounts to integration, in order to find the area of the

figure cut off between any portion of the curve and the

two radii vectores drawn to its extremities. Props. 13-20
are interesting and difficult propositions establishing the

properties of tangents to the spiral. Props. 21-23 show
how to inscribe and circumscribe to any portion of the

spiral figures consisting of a multitude of elements which

are narrow sectors of circles with the origin as centre
;

the area of the spiral is intermediate between the areas

of the inscribed and circumscribed figures, and by the

usual method of exhaustion Archimedes finds the areas

required. Prop. 24 gives the area of the first complete
turn of the spiral (= ^7r(27ra)

2
,
where the spiral is r = aO\

and of any portion of it up to OP where P is any point
on the first turn. Props. 25, 26 deal similarly with the

second turn of the spiral and with the area subtended by
any arc (not being greater than a complete turn) on any
turn. Prop. 27 proves the interesting property that, if
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R! be the area of the first turn of the spiral bounded by
the initial line, R2 the area of the ring added by the
second complete turn, R8

the area of the ring added by the
third turn, and so on, then R 3

= 2R 2 ,
R

4
= 3R 2 ,

R5
= 4R 2,

and so on to Rn = (n -
i)R 2 ,

while R2
= 6Rj.

Quadrature of the Parabola.-

The title of this work seems originally to have been
On the Section of a Right-angled Cone and to have been

changed after the time of Apollonius, who was the first

to call a parabola by that name. The preface addressed

to Dositheus was evidently the first communication from
Archimedes to him after the death of Conon. It begins
with a feeling allusion to his lost friend, to whom the

treatise was originally to have been sent. It is in this

preface that Archimedes alludes to the lemma used by
earlier geometers as the basis of the method of exhaus-

tion (the Postulate of Archimedes, or the theorem of

Euclid X., i). He mentions as having been proved by
means of it (l) the theorems that the areas of circles are

to one another in the duplicate ratio of their diameters,
and that the volumes of spheres are in the triplicate

ratio of their diameters, and (2) the propositions proved

by Eudoxus about the volumes of a cone and a pyramid.
No one, he says, so far as he is aware, has yet tried to

square the segment bounded by a straight line and a

section of a right-angled cone (a parabola) ;
but he has

succeeded in proving, by means of the same lemma, that

the parabolic segment is equal to four-thirds of the

triangle on the same base and of equal height, and he

sends the proofs, first as "investigated" by means of

mechanics and secondly as " demonstrated
"
by geometry.

The phraseology shows that here, as in the Method,
Archimedes regarded the mechanical investigation as

furnishing evidence rather than proof of the truth of the

proposition, pure geometry alone furnishing the absolute

proof required.



44 ARCHIMEDES

The mechanical proof with the necessary preliminary
propositions about the parabola (some of which are

merely quoted, while two, evidently original, are proved,

Props. 4, 5) extends down to Prop. 17; the geometrical

proof with other auxiliary propositions completes the

book (Props. 18-24). The mechanical proof recalls that

of the Method in some respects, but is more elaborate in

that the elements of the area of the parabola to be
measured are not straight lines but narrow strips. -The

figures inscribed and circumscribed to the segment are

made up of such narrow strips and have a saw-like edge ;

all the elements are trapezia except two, which are

triangles, one in each figure. Each trapezium (or

triangle) is weighed where it is against another area

hung at a fixed point of an assumed lever
;
thus the

whole of the inscribed and circumscribed figures respec-

tively are weighed against the sum of an indefinite number
of areas all suspended from one point on the lever. The
result is obtained by a real integration, confirmed as

usual by a proof by the method of exhaustion.

The geometrical proof proceeds thus. Drawing in

the segment the inscribed triangle with the same base

and height as the segment, Archimedes next inscribes

triangles in precisely the same way in each of the seg-
ments left over, and proves that the sum of the two new

triangles is J of the original inscribed triangle. Again,

drawing triangles inscribed in the same way in the four

segments left over, he proves that their sum is \ of the

sum of the preceding pair of triangles and therefore ()
2

of the original inscribed triangle. Proceeding thus, we
have a series of areas exhausting the parabolic segment.
Their sum, if we denote the first inscribed triangle by J, is

Archimedes proves geometrically in Prop. 23 that the

sum of this infinite series is A, and then confirms by
reductio ad absurdum the equality of the area of the

parabolic segment to this area.



CHAPTER V.

THE SANDRECKONER.

THE Sandreckoner deserves a place by itself. It is not

mathematically very important ;
but it is an arithmetical

curiosity which illustrates the versatility and genius of

Archimedes, and it contains some precious details of

the history of Greek astronomy which, coming from such
a source and at first hand, possess unique authority. We
wilt begin with the astronomical data. They are con-

tained in the preface addressed to King Gelon of Syracuse,
which begins as follows :

" There are some, King Gelon, who think that the

number of the sand is infinite in multitude
;
and I mean

by the sand not only that which exists about Syracuse
and the rest of Sicily but also that which is found in

every region whether inhabited or uninhabited. Again,
there are some who, without regarding it as infinite, yet
think that no number has been named which is great

enough to exceed its multitude. And it is clear that

they who hold this view, if they imagined a mass made

up of sand in other respects as large as the mass of the

earth, including in it all the seas and the hollows of the

earth filled up to a height equal to that of the highest of

the mountains, would be many times further still from

recognising that any number could be expressed which

exceeded the multitude of the sand so taken. But I will

try to show you, by means of geometrical proofs which

you will be able to follow, that, of the numbers named

by me and given in the work which I sent to Zeuxippus,

(45) 4
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some exceed not only the number of the mass of sand

equal in size to the earth filled up in the way described,
but also that of a mass equal in size to the universe.

" Now you are aware that '

universe
'

is the name given

by most astronomers to the sphere the centre of which is

the centre of the earth, while the radius is equal to the

straight line between the centre of the sun and the centre

of the earth. This is the common account, as you have
heard from astronomers. But Aristarchus of Samos

brought out a book consisting of some hypotheses, in

which the premises lead to the conclusion that the uni-

verse is many times greater than that now so called.

His hypotheses are that the fixed stars and the sun re-

main unmoved, that the earth revolves about the sun in

the circumference of a circle, the sun lying in the centre

of the orbit, and that the sphere of the fixed stars,

situated about the same centre as the sun, is so great
that the circle in which he supposes the earth to revolve

bears such a ratio to the distance of the fixed stars as

the centre of the sphere bears to its surface."

Here then is absolute and practically contemporary
evidence that the Greeks, in the person of Aristarchus of

Samos (about 310-230 B.C.), had anticipated Copernicus.

By the last words quoted Aristarchus only meant to

say that the size of the earth is negligible in comparison
with the immensity of the universe. This, however, does

not suit Archimedes's purpose, because he has to assume
a definite size, however large, for the universe. Con-

sequently he takes a liberty with Aristarchus. He says
that the centre (a mathematical point) can have no ratio

whatever to the surface of the sphere, and that we must
therefore take Aristarchus to mean that the size of the

earth is to that of the so-called " universe" as the size

of the so-called " universe
"

is to that of the real universe

in the new sense.

Next, he has to assume certain dimensions for the

earth, the moon and the sun, and to estimate the angle
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subtended at the centre of the earth by the sun's diameter;
and in each case he has to exaggerate the probable
figures so as to be on the safe side. While therefore

(he says) some have tried to prove that the perimeter
of the earth is 300,000 stadia (Eratosthenes, his con-

temporary, made it 252,000 stadia, say 24,662 miles,

giving a diameter of about 7,850 miles), he will assume
it to be ten times as great or 3,000,000 stadia. The
diameter of the earth, he continues, is greater than that

of the moon and that of the sun is greater than that of

the earth. Of the diameter of the sun he observes that

Eudoxus had declared it to be nine times that of the

moon, and his own father, Phidias, had made it twelve

times, while Aristarchus had tried to prove that the

diameter of the sun is greater than eighteen times but

less than twenty times the diameter of the moon (this

was in the treatise of Aristarchus On the Sizes and Dis-

tances of the Sun and Moon
y
which is still extant, and

is an admirable piece of geometry, proving rigorously,
on the basis of certain assumptions, the result stated).

Archimedes again intends to be on the safe side, so he

takes the diameter of the sun to be thirty times that of

the moon and not greater. Lastly, he says that Aris-

tarchus discovered that the diameter of the sun appeared
to be about T-^th part of the zodiac circle, i.e. to sub-

tend an angle of about half a degree ;
and he describes

a simple instrument by which he himself found that the

angle subtended by the diameter of the sun at the time

when it had just risen was less than TJTth part and

greater than o-J^th part of a right angle. Taking this as

the size of the angle subtended at the eye of the observer

on the surface of the earth, he works out, by an interest-

ing geometrical proposition, the size of the angle sub-

tended at the centre of the earth, which he finds to

be >o-J-jrd part of a right angle. Consequently the

diameter of the sun is greater than the side of a regular

polygon of 812 sides inscribed in a great circle of the
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so-called
"
universe," and a fortiori greater than the side

of a regular chiliagon (polygon of 1000 sides) inscribed in

that circle.

On these assumptions, and seeing that the perimeter
of a regular chiliagon (as of any other regular polygon
of more than six sides) inscribed in a circle is more than

3 times the length of the diameter of the circle, it easily
follows that, while the diameter of the earth is less than

1,000,000 stadia, the diameter of the so-called " uni-

verse "is less than 10,000 times the diameter of the

earth, and therefore less than 10,000,000,000 stadia.

Lastly, Archimedes assumes that a quantity of sand
not greater than a poppy-seed contains not more than

10,000 grains, and that the diameter of a poppy-seed is

not less than ^th of a dactylus (while a stadium is less

than 10,000 dactylt).

Archimedes is now ready to work out his calculation,

but for the inadequacy of the alphabetic system of

numerals to express such large numbers as are required.

He, therefore, develops his remarkable terminology for

expressing large numbers.

The Greek has names for all numbers up to a myriad

(10,000) ;
there was, therefore, no difficulty in expressing

with the ordinary numerals all numbers up to a myriad
myriads (100,000,000). Let us, says Archimedes, call

all these numbers numbers of the first order. Let the

second order of numbers begin with 100,000,000, and end
with ioo,ooo,ooo

2
. Let 1 00,000,ooo

2 be the first number
of the third order, and let this extend to 1 00,000 ,ooo

3
;

and so on, to the myriad-myriadth order, beginning with

loOjOOO^oo"'999 '999 and ending with loOjOoo^oo
100-000-000

,

which for brevity we will call P. Let all the numbers
of all the orders up to P form the first period, and let

the first order of the secondperiod begin with P and end
with 100,000,000 P

;
let the second order begin with this,

the third order with ioo,ooo,ooo
2
P, and so on up to the

ioo>ooo,oooth order of the second period^ ending with
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1 00,000,ooo
100'

000
'000 P or P 2

. The first order of the third

period begins with P2
,
and the orders proceed as before.

Continuing the series ofperiods and orders of each period,

we finally arrive at the 100,ooopooth period ending with

P100'000'000
. The prodigious extent of this scheme is seen

when it is considered that the last number of the first

period would now be represented by I followed by
800,000,000 ciphers, while the last number of the

ioo,ooo,oooth period would require 100,000,000 times

as many ciphers, i.e. 80,000 million million ciphers.

As a matter of fact, Archimedes does not need, in

order to express the " number of the sand," to go beyond
the eighth order of the first period. The orders of the

firstperiod begin respectively with i, io8
,
iol6

,
io24

,
...

( I o8

)
99 '999 '999

;
and we can express all the numbers re-

quired in powers of io.

Since the diameter of a poppy-seed is not less than

^th of a dactylus, and spheres are to one another in the

triplicate ratio of their diameters, a sphere of diameter

I dactylus is not greater than 64,000 poppy-seeds, and,

therefore, contains not more than 64,000 x 10,000 grains

of sand, and a fortiori not more than 1,000,000,000, or

io9 grains of sand. Archimedes multiplies the diameter

of the sphere continually by loo, and states the corre-

sponding number of grains of sand. A sphere of diame-

ter 10,000 dactyli and a fortiori of one stadium contains

less than io21
grains; and proceeding in this way to

spheres of diameter 100 stadia, 10,000 stadia and so on,

he arrives at the number of grains of sand in a sphere

of diameter 10,000,000,000 stadia, which is the size of

the so-called universe
;

the corresponding number of

grains of sand is io51
. The diameter of the real universe

being 10,000 times that of the so-called universe, the

final number of grains of sand in the real universe is

found to be io63
,
which in Archimedes's terminology is a

myriad-myriad units of the eighth order of numbers.



CHAPTER VI.

MECHANICS.

IT is said that Archytas was the first to treat mechanics
in a systematic way by the aid of mathematical principles ;

but no trace survives of any such work by him. In

practical mechanics he is said to have constructed a

mechanical dove which would fly, and also a rattle to

amuse children and "keep them from breaking things
about the house" (so says Aristotle, adding

"
for it is

impossible for children to keep still").

In the Aristotelian Mechanica we find a remark on the

marvel of a great weight being moved by a small force,

and the problems discussed bring in the lever in various

forms as a means of doing this. We are told also that

practically all movements in mechanics reduce to the

lever and the principle of the lever (that the weight and
the force are in inverse proportion to the distances from
the point of suspension or fulcrum of the points at which

they act, it being assumed that they act in directions

perpendicular to the lever). But the lever is merely
" referred to the circle

"
;
the force which acts at the

greater distance from the fulcrum is said to move a weight
more easily because it describes a greater circle.

There is, therefore, no proof here. It was reserved for

Archimedes to prove the property of the lever or balance

mathematically, on the basis of certain postulates pre-

cisely formulated and making no large demand on the

faith of the learner. The treatise On Plane Equilibriums

(50)



MECHANICS 51

in two books is, as the title implies, a work on statics

only ; and, after the principle of the lever or balance has
been established in Props. 6, 7 of Book L, the rest of
the treatise is devoted to finding the centre of gravity of

certain figures. There is no dynamics in the work and
therefore no room for the parallelogram of velocities,

which is given with a fairly adequate proof in the

Aristotelian Mechanica.

Archimedes's postulates include assumptions to the

following effect: (i) Equal weights at equal distances

are in equilibrium, and equal weights at unequal distances

are not in equilibrium, but the system in that case

"inclines towards the weight which is at the greater

distance," in other words, the action of the weight which
is at the greater distance produces motion in the direc-

tion in which it acts
; (2) and (3) If when weights are

in equilibrium something is added to or subtracted from
one of the weights, the system will "incline" towards

the weight which is added to or the weight from which

nothing is taken respectively ; (4) and (5) If equal and
similar figures be applied to one another so as to coin-

cide throughout, their centres of gravity also coincide
;

if

figures be unequal but similar, their centres of gravity
are similarly situated with regard to the figures.

The main proposition, that two magnitudes balance at

distances reciprocally proportional to the magnitudes, is

proved first for commensurable and then for incom-

mensurable magnitudes. Preliminary propositions have

dealt with equal magnitudes disposed at equal distances

on a straight line and odd or even in number, and have

shown where the centre of gravity of the whole system
lies. Take first the case of commensurable magnitudes.
If A, B be the weights acting at E, D on the straight

line ED respectively, and ED be divided at C so that

A : B = DC : CE, Archimedes has to prove that the

system is in equilibrium about C. He produces ED to

K, so that DK = EC, and DE to L so that EL = CD
;
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LK is then a straight line bisected at C. Again, let H
be taken on LK such that LH = 2LE or 2CD, and
it follows that the remainder HK = 2DK or 2EC.
Since A, B are commensurable, so are EC, CD. Let
x be a common measuie of EC, CD. Take a weight
w such that w is the same part of A that x is of LH.
It follows that w is the same part of B that x is of HK.
Archimedes now divides LH, HK into parts equal to x^

and A B into parts equal to w, and places the w's at

the middle points of the .ar's respectively. All the w's

are then in equilibrium about C. But all the w's acting
at the several points along LH are equivalent to A
acting as a whole at the point E. Similarly the w's

acting at the several points on HK are equivalent to B
acting at D. Therefore A, B placed at E, D respectively
balance about C.

Prop. 7 deduces by reductio ad absurdum the same
result in the case where A, B are incommensurable.

Prop. 8 shows how to find the centre of gravity of the

remainder of a magnitude when the centre of gravity of

the whole and of a part respectively are known. Props.

9-15 find the centres of gravity of a parallelogram, a

triangle and a parallel-trapezium respectively.
Book II., in ten propositions, is entirely devoted to

finding the centre of gravity of a parabolic segment, an

elegant but difficult piece of geometrical work which is

as usual confirmed by the method of exhaustion.



CHAPTER VII.

HYDROSTATICS.

THE science of hydrostatics is, even more than that of

statics, the original creation of Archimedes. In hydro-
statics he seems to have had no predecessors. Only one
of the facts proved in his work On Floating Bodies, in

two books, is given with a sort of proof in Aristotle.

This is the proposition that the surface of a fluid at rest

is that of a sphere with its centre at the centre of the

earth.

Archimedes founds his whole theory on two postulates,
one of which comes at the beginning and the other after

Prop. 7 of Book I. Postulate I is as follows :

" Let us assume that a fluid has the property that, if

its parts lie evenly and are continuous, the part which is

less compressed is expelled by that which is more com-

pressed, and each of its parts is compressed by the fluid

above it perpendicularly, unless the fluid is shut up in

something and compressed by something else."

Postulate 2 is: "Let us assume that any body which

is borne upwards in water is carried along the perpen-
dicular [to the surface] which passes through the centre

of gravity of the body ".

In Prop. 2 Archimedes proves that the surface of any
fluid at rest is the surface of a sphere the centre of which

is the centre of the earth. Props. 3-7 deal with the

behaviour, when placed in fluids, of solids (i) just as

(53)
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heavy as the fluid, (2) lighter than the fluid, (3) heavier

than the fluid. It is proved (Props. 5, 6) that, if the

solid is lighter than the fluid, it will not be completely
immersed but only so far that the weight of the solid

will be equal to that of the fluid displaced, and, if it be

forcibly immersed, the solid will be driven upwards by a

force equal to the difference between the weight of the

solid and that of the fluid displaced. If the solid is

heavier than the fluid, it will, if placed in the fluid,

descend to the 'bottom and, if weighed in the fluid, the

solid will be lighter than its true weight by the weight
of the fluid displaced (Prop. 7).

The last-mentioned theorem naturally connects itself

with the story of the crown made for Hieron. It was

suspected that this was not wholly of gold but contained

an admixture of silver, and Hieron put to Archimedes
the problem of determining the proportions in which the

metals were mixed. It was the discovery of the solution

of this problem when in the bath that made Archimedes

run home naked, shouting evpyKa, evpijKa. One account

of the solution makes Archimedes use the proposition
last quoted ;

but on the whole it seems more likely that

the actual discovery was made by a more elementary
method described by Vitruvius. Observing, as he is said

to have done, that, if he stepped into the bath when it

was full, a volume of water was spilt equal to the volume
of his body, he thought of applying the same idea to the

case of the crown and measuring the volumes of water dis-

placed respectively (i) by the crown itself, (2) by the same

weight of pure gold, and (3) by the same weight of pure
silver. This gives an easy means of solution. Suppose
that the weight of the crown is W, and that it contains

weights w\ and wz of gold and silver respectively. Now
experiment shows (i) that the crown itself displaces
a certain volume of water, V say, (2) that a weightW of gold displaces a certain other volume of water,
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Y! say, and (3) that a weight W of silver displaces a

volume V.j.

From (2) it follows, by proportion, that a weight w^ of
*Z/

gold will displace r Vj of the fluid, and from (3) it

follows that a weight zv
2
of silver displaces ^. V2 of the

fluid.

Wi W9 X7Hence V=W .V1+ ~.V2 ;

therefore WV = w
l
V

l + ze/2V 2,

that is, (ze/! + z*;
2)V = ze^Vi + ^2V2 ,

so that wjwz
= (V2

- V)/(V - Vji
which gives the required ratio of the weights of gold and
silver contained in the crown.

The last two propositions of Book I. investigate the

case of a segment of a sphere floating in a fluid when the

base of the segment is (i) entirely above and (2) entirely
below the surface of the fluid

;
and it is shown that the

segment will in either case be in equilibrium in the posi-

tion in which the axis is vertical, the equilibrium being
in the first case stable.

Book II. is a geometrical tour de force. Here, by the

methods of pure geometry, Archimedes investigates the

positions of rest and stability of a right segment of a

paraboloid of revolution floating with its base upwards
or downwards (but completely above or completely
below the surface) for a number of cases differing (i) ac-

cording to the relation between the length of the axis of

the paraboloid and the principal parameter of the gene-

rating parabola, and (2) according to the specific gravity

of the solid in relation to the fluid
;
where the position

of rest and stability is such that the axis of the solid is

not vertical, the angle at which it is inclined to the

vertical is fully determined

The idea of specific gravity appears all through, though
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this actual term is not used. Archimedes speaks of the

solid being lighter or heavier than the fluid or equally

heavy with it, or, when a ratio has to be expressed, he

speaks of a solid the weight of which (for an equal volume)
has a certain ratio to that of the fluid.
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CHRONOLOGY.

(APPROXIMATE IN SOME CASES.)

B.C.

624-547

572-497

500-428

470-400

470-380
460-385

430-360
427-347

415-369
408-355

fl. about 350

fl. 300
310-230
287-212
284-203

265-190

Thales

Pythagoras

Anaxagoras

(Hippocrates of Chios

t Hippias of Elis

Democritus
Theodorus of Cyrene

Archytas of Taras (Tarentum)
Plato

Theaetetus

Eudoxus of Cnidos

I

Leon
Meruechmus
Dinostratus

Theudius
Euclid

Aristarchus of Samos
Archimedes
Eratosthenes

Apollonius of Perga
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