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SUMMARY

Ancient Greek geographers expressed the north-south coordinate of a point
in at least two different ways before the use of latitude became standard.
Coordinates expressed in these ways were naturally rounded to convenient
values. Later, when latitude was adopted, its values were often calculated from
these rounded values instead of being measured afresh. This process may be
the origin of the angular data that Eratosthenes used to estimate the size of
the Earth.

ERATOSTHENES’ MEASUREMENT

Ancient Greek scientists made several estimates of the circumference of
the Earth, but the most famous one was made by Eratosthenes circa 300 BC.
The writing of Eratosthenes is now lost except for fragments that were
quoted (or more likely paraphrased) by later but still ancient writers. While
the ancient writers sometimes disagree about what he actually wrote or did,
they all luckily agree about the general method by which he estimated the
circumference of the Earth. Dreyer (1905, pp. 174ff) and Fischer (1975)
discuss the ancient writings connected with this estimate in considerable
detail, and they give the necessary references to the ancient literature.

Eratosthenes believed that the Sun was directly overhead at noon on the
longest day of the year at Syene (the modern Aswan) in Egypt. On this day in
Alexandria, however, he believed that the zenith distance of the Sun was 1/50
of a circle. Since the distance between the two places, which he thought were
on the same meridian, was 5000 stades, the circumference was therefore
250 000 stades.

Stade is the form used in modern English to denote the ancient unit of
length that is called stadium in Latin and stadion in Greek. The literature
in this century has seen a violent controversy about the length of the stade
and indeed about whether there may have been many different stadia.
Dicks (1960, p. 43) says that Lehmann-Haupt, in a paper that I have not
consulted, gives evidence for at least six different types of stade, with lengths
ranging from about 150 metres to about 210 metres. I reserve judgment about
the validity of this evidence.

The years have also seen a violent controversy about the accuracy of
Eratosthenes’ estimate. The accuracy is, of course, intimately connected
with the length of the stade. I have seen an accuracy of 05 per cent claimed
in some recent sources, even though such an accuracy was far beyond the
capability of measurement in the time of Eratosthenes.
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In this paper, I do not intend to enter into this controversy. Instead, I
shall advance an hypothesis about the origins of the various angles or arcs
that are involved, either explicitly or implicitly, in Eratosthenes’ estimate.
If my hypothesis is correct, the controversy about the length of the stade is
largely meaningless in this context, although it may be significant in other
contexts.

THE ANGLES OR ARCS INVOLVED

Four different statements about angles or arcs are involved in Eratosthenes’
estimate of the circumference of the Earth. They are:

(1) Aswan was located on the northern tropic (the Tropic of Cancer).
In fact the latitude of the tropic in Eratosthenes’ time was about 23° 43’
and the latitude of Aswan is 24° 5’. The error in saying that Aswan was on
the tropic is about 22 arcmin, which is greater than the radius of the Sun.

(2) If Aswan was on the tropic, its latitude was the same as the obliquity
of the ecliptic. According to Ptolemy (circa 142, Chapter 1. 12), Eratosthenes
took the obliquity to be 23° 51” 20”. Therefore Eratosthenes took this value
to be also the latitude of Aswan.

(3) By implication, Eratosthenes measured the latitude of Alexandria,
and he found it to be 31° 3’ 20”. The correct value is about 31° 13’, so the
error is about 10 arcmin. Note that the latitudes which Eratosthenes used
for both Alexandria and Aswan are too small by large amounts. Note also
that Ptolemy (circa 142, Chapter V. 12) implies that he measured the latitude
of Alexandria and found it to be 30° 58’.

(4) Eratosthenes took the difference between the latltudcs of Aswan and
Alexandria and found it to be 1/50 of a circle, or 7° 12".

The first three statements deal with the latitudes of the Tropic of Cancer,
of Aswan, and of Alexandria. All are in error by an amount that is comparable
to the radius of the solar disc, and the error in the first statement in fact
exceeds this radius. We must look at methods of finding latitude that were
available in ancient times in order to see the significance of this fact.

ANCIENT MEASUREMENTS OF LATITUDE

Ptolemy (circa 142, Chapter I. 12) describes a simple way of measuring
latitude and of finding the obliquity of the ecliptic at the same time. One
makes a graduated arc of a circle, such as a quadrant, and anchors it so that
it lies in the plane of the meridian. One then puts a pin at its centre, so that
the shadow of the pin will fall on the circle at noon. In this way one can
measure the zenith distance of the Sun when it is in the meridian on any day
that the weather permits.

To find the latitude and obliquity, one measures the zenith distance at the
two solstices. The obliquity e is half the difference of these values and the
latitude B is half their sum. The accuracy of this method is rather high,
particularly at a location as far south as Alexandria. There are four principal
sources of error.
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In order to measure the zenith distance of the Sun, one fits a marker of
some sort to the graduated circle and adjusts it so that it is symmetrical with
respect to the shadow. Since this is a symmetry operation, it can be done with
high accuracy. I have done some testing on myself and some friends, and 1
believe that the standard deviation in locating the marker is about 1 part in 50
of the diameter. This is about 40 arcsec in the case of the Sun.

The second source is instrumental. The circle must be graduated and
aligned accurately. The accuracy of doing this depends upon the size of the
circle and the care of the maker, among other things, but the operations
involved are still essentially those of symmetry, and it is not likely that they
exceed I arcmin. ‘

The third is refraction. The amount of refraction at Alexandria is 7 arcsec
at the summer solstice and 1’ 25" at the winter solstice. The error in the
latitude is the average of these, namely 46 arcsec.

Finally we have the error in reading the position of the marker on the
circle. On the basis of my own experience, I believe that the standard devia-
tion of such a reading is about 1 part in 16 or less. If the circle is graduated
only to the nearest degree, the resulting error is slightly less than 4 arcmin.

Overall, I think we can safely say that the standard deviation of a single
reading of the Sun’s zenith distance was about 4 arcmin. Since the latitude is
the average of two readings, its standard deviation was about 3 arcmin.
In contrast, Eratosthenes made an error of 22 arcmin in locating Aswan with
respect to the tropic and he made an error of 10 arcmin in the latitude of
Alexandria, while Ptolemy made an error of 15 arcmin in the same latitude.
It does not seem possible that these errors came from using a graduated arc
to read the zenith distance of the Sun.

An older way to find the zenith distance of the Sun was to measure the
length of the shadow cast at noon by a vertical rod called a gnomon. The
length of the shadow divided by the length of the gnomon equals what we
call the tangent of the zenith distance. Here we have an unsymmetrical
situation and the errors are much larger. The largest error probably comes
from the fact that the Sun is not a point source and the shadow does not have
a sharply defined edge. In using a gnomon, it is easy to make an error equal
to the radius of the Sun, but a much larger error is unlikely.

According to ancient tradition (Fischer, 1975), Eratosthenes found the
zenith distance of the Sun by using a vertical rod placed in a hemispherical
bowl. This device gives the zenith distance directly instead of giving its
tangent, but it is still subject to the error that arises from the finite size of the
Sun. It seems doubtful to me that this device is appreciably more accurate
than the conventional gnomon whose shadow length is measured.

The size of the error in relating Aswan to the tropic is 22 arcmin, which
exceeds the radius of the Sun by a considerable amount. No known method of
observation is likely to yield such an error. On the other hand, if Eratosthenes
used 31° 3’ 20" for the latitude of Alexandria (I shall give a reason below for
suspecting that he used 30° 58’), he made an error of only about 10 arcmin
and Ptolemy, who did use 30° 58', made an error of about 15 arcmin. The
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sizes of both errors are consistent with the use of a gnomon, but this does not
make it likely that either in fact did so, for a well-known reason that I shall
discuss briefly in the next section. Further, Ptolemy claims rather explicitly
that he used a graduated circle to make the measurement.

ACCIDENTAL AGREEMENT AND STATISTICAL SIGNIFICANCE

Before going on to suggest an origin for Eratosthenes’ angular data, we
must look briefly at a rather elementary point. Suppose that we make a
measurement of some physical quantity, such as the latitude of Alexandria,
and suppose that we find the value x. Suppose further that we believe that the
standard deviation of the measurement equals o. Then we often express the
result by saying that the measured value is x+o.

It often happens that we do not have any theoretical way to predict the
value of the quantity when we make the measurement but that we discover
a theory some time later. Let us say that the theory predicts the value X,
which agrees reasonably well with x. We then ask: Is this agreement significant,
or could it have come about simply by accident in the measuring process ?

The significance clearly depends upon the ratio |x— X|/o. If this ratio is
large, it is not likely that the theoretical value is correct. If the ratio is small,
we say that the agreement is statistically significant, because it is unlikely
that such a close agreement would happen by chance. There are standard
tables for calculating the probability that a particular value of the ratio
would happen by chance.

In dealing with ancient astronomical data, we often have occasion to
reverse the process. In the case of the latitude of Alexandria, for example,
we know the correct value, call it X, rather accurately from modern results.
We also have an ancient measurement, x say, and we have an ancient but
perhaps mistaken description of how the measurement was made, from
which we can estimate the standard deviation ¢ of the measuring process.
We then use the ratio |x— X|/o to assess the probability that the process
described was the one actually used. The process was probably the one used
if the ratio is small, and it was probably not the one used if the ratio is large.

I shall apply this idea to Eratosthenes’ data later in this paper, but it is
useful at this point to look briefly at the latitude of Alexandria that Ptolemy
claims to have found by using a graduated circle. As we saw above, o for
the process that he describes is about 3 arcmin, but the error in his result is
about 15 arcmin, about 50. The probability that an error could be this large
is less than 1078, Thus there is little chance that Ptolemy found the latitude
by the method he describes; he almost surely found it in some other way. I
shall suggest a possible origin for his value in the next section.

THE ORIGIN OF ERATOSTHENES’ ANGULAR DATA

To find what I suggest as the origins of the angular data used by
Eratosthenes, we must turn to some quantities that the ancient Greeks
used to specify the north-south coordinate of a point. Apparently they did
not use the latitude itself in the early development of Greek astronomy and
geography. The first quantity they used was probably the shadow length
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of a gnomon that we have already discussed. The ratio of the shadow length
to the length of the gnomon, if the measurement is made at an equinox,
is just the tangent of the latitude.

Another quantity used was the length of the longest day of the year.
In Chapter II. 6 of his work on astronomy, Ptolemy presents a table in
which the independent variable is the length of the longest day, for day lengths
ranging from 12 hours to 24 hours. The tabular interval varies from 4 hour
for the smallest values to 1 hour for the largest ones. For each length of the
longest day, Ptolemy lists the latitude and the shadow lengths (for a gnomon
of length 60) at noon at the equinoxes and the solstices.

The key to the situation, as Rawlins (1980) shows, is that ancient geo-
graphical tables were intended primarily for use by astrologers, whose calcula-
tions involved the position of a person’s birthplace, among other things.
The astrologers needed tables whose independent variable was one of the
quantities used to specify the north-south coordinate. Since they did not
need the position to high accuracy, they rounded the length of the longest day,
say, to one of the values given in whatever table they happened to be using.
Later, when latitude itself was adopted as a coordinate, geographers (or
astrologers) calculated it from such a rounded value, without realizing that
it was a rounded value and not a directly measured one. This explains why
the typical error in a latitude taken from an ancient geography is a degree.

This process suggests what may be the origins of the angular data that
Eratosthenes used. There are four points involved in my suggestion.

(1) Placing Aswan on the tropic. This is probably the easiest point to
understand, even though we cannot provide a unique explanation of it.
One possibility is that travellers who had been to Aswan told their friends
when they got back to Alexandria that there were no noontime shadows at
Aswan on the longest day, and a perspiring traveller looking down at his own
noontime shadow there could indeed be excused for saying that he had none.
There are numerous ways by which people could have been led to believe
that Aswan was on the tropic; all involve taking a vague observation and
transforming it into a precise statement.

(2) The length of the longest day at Aswan. The correct value was about
130 31™* which would naturally be rounded to 131 hours; no one at the
time would have considered this to be a serious error. According to Ptolemy’s
table (Ptolemy, circa 142, Chapter II. 6), 23° 51’ 20” is the value of the
latitude that corresponds to a longest day of 133 hours; I have not verified the
calculation. Thus taking the longest day as 134 hours led to taking 23° 51" 20"
as being simultaneously the latitude of Aswan and the obliquity of the
ecliptict.

*1 should point out that the length of the day was almost surely not a measured quantity.
It was probably calculated from a measurement of the north-south coordinate, which
might have been made either by a gnomon or by a graduated circle. Refraction and the
apparent diameter of the Sun would have been ignored in the calculation.

+The matter is complicated by the fact that the longest day at any place depends upon
the obliquity as well as upon the latitude of the place. At Aswan we have the unique
situation where the latitude must equal the obliquity and where the length of the longest
day is to come out as 13% hr.
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(3) The length of the equinoctial noontime shadow at Alexandria. The
length of this shadow is approximately 36-4 parts (for a gnomon of 60 parts)
at an equinox. This would naturally be rounded to 36 parts, which is a
very round number for someone who works in sexagesimal arithmetic.
The corresponding latitude is 30° 58’, which is exactly the value that Ptolemy
uses. It is a suggestion of this paper that Eratosthenes used this value before
him, and for just the same reason.

(4) The arc between Aswan and Alexandria. Eratosthenes assumed that
Aswan and Alexandria are on the same meridian, and the error produced
by this assumption is small compared with other errors. Thus he took the
arc between them to be 30° 58’ minus 23° 51" (I neglect the seconds here),
or 7°7'. This is 1/50-6 of a circle. Perhaps Eratosthenes simply truncated the
denominator to 50; ancient mathematicians often truncated numbers instead
of rounding them. Even if he did not do this, it is clear that he was dealing in
round numbers in his estimate, and he would choose to round the denominator
to 50 rather than 51. In this way, we have derived a possible basis for the
angular part of Eratosthenes’ measurement of the Earth.

DISCUSSION

Rawlins’ work reveals the fact that errors in ancient Greek latitudes are
often 1° or more. The errors involved in Eratosthenes’ measurement of the
Earth’s circumference are not as large as this, but they are still too large to
have come from using graduated circles. The size of the errors at Alexandria
is compatible with the use of a gnomon, but the error in relating Aswan to the
tropic is too large for even this method.

However, we reproduce Eratosthenes’ data accurately if we assume that
they came from old methods of expressing the north-south coordinate
of a point. At Alexandria, we assume that the shadow length was rounded
from 36-4 parts (for a gnomon of 60 parts) to 36 parts. At Aswan we assume
that the length of the longest day was rounded from 13® 31™ to 133 hr.
We do not actually need Rawlins’ hypothesis that the rounding involved in
ancient geographical latitudes was done for the convenience of astrologers.
The rounding involved in this paragraph would probably have seemed
negligible to any scientist of the third century BcC.

Thus we have a ‘theory’ that agrees with all the angular data used in
Eratosthenes’ measurement, and we should ask whether the agreement is
significant or accidential. Let us look first at the obliquity, which he took to
be equal to the latitude of Aswan; he made an error of 22 arcmin in doing so.

When a gnomon is used to measure the zenith distance, it is reasonable to
take the standard deviation o to equal 16 arcmin, the radius of the Sun.
When a graduated circle is used, the value of ¢ drops to about 4 arcmin,
because the shadow of the Sun is symmetrical in this case. But when a gnomon
is used on the tropic at noon on the day of the summer solstice, we also have a
symmetrical situation, and the uncertainty in using a gnomon to decide if a
point is on the tropic should thus be about 4 arcmin. The error of 22 arcmin
is therefore about 5-5 o, and the probability that an error can be this large is
less than 10-8. Thus we have high confidence that the latitude used for Aswan
was not measured with a gnomon. Equally, it was not measured with a
graduated circle.
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Eratosthenes takes the latitude of Aswan to be 23° 51’ 20”. To be con-
servative, let us ignore the seconds and say that he uses 23° 51’. Our ‘theory’
predicts that he should have found just this value, namely 23° 51°. The
agreement with our theory is exact to the level of rounding used; that is, the
agreement is within 30 arcsec*. Now we must ask what are the chances that a
person at Aswan would have obtained the value of 23° 51’ by accident. More
specifically, we must ask what are the chances that he got a value between
23° 50}’ and 23° 514, which he would round to 23° 51'.

The chances are greater if the observer used a gnomon rather than a
graduated circle, so I shall consider only the former. If he were actually at
Aswan, he was far enough north of the tropic to make the gnomon asym-
metrical, so we should take ¢ = 16 arcmin. His latitude was 24° §’, so his
error was 14 arcmin. The chance that his error would lie in an interval
I arcmin wide centred at 14 arcmin is about 0-017, about 1 chance in 60.
Thus there is little chance that the agreement happened by chance, and the
agreement with our theory is rather significant} even on the conservative
basis I have used.

Now let us turn to the latitude B of Alexandria that Eratosthenes used.
Here we are hampered by not knowing exactly what 8 was. All we know is
that the ratio 360/(B—23° 51") is a number that he felt justified in rounding to
50. A moment ago I said that he would probably have felt justified in changing
506 to 50, so, for symmetry, let us assume that the ratio in question lay
between 494 and 50-6. Then B lay in the interval of 10 arcmin between
30° 58’ and 31° &', and the average is 31° 3', an error of 10 arcmin.

If we assume that he used a gnomon, we again have o == 16 arcmin. The
probability that a measurement would yield a value within the specified
range is about 0-20, about 1 part in §. Thus it is not likely that the value of
B came from a careful measurement. It is more likely that it originated in
some other way.

Our ‘theoretical’ value of 8 is 30° 58, which corresponds to a shadow
length of exactly 36 parts out of 60, and this is within the range that
Eratosthenes might have used. The probability that this agreement happened
by chance is again about 0-20, about 1 part in 5. Our theory is confirmed by a
modest but not overwhelming margin.

However, there is another argument which strengthens the theory, although
I do not see how to attach a quantatitive confidence level to the argument.
We saw above that Ptolemy claimed to have found 30° 58’ for the latitude
by using a graduated meridian circle, and, as we also saw, we may safely
conclude that he did not in fact make such a measurement. If he did not
find this value from measurement, he must have adopted it either because
it was derived from a rounded shadow length, or because it was a traditional
value, or both. Since Ptolemy accepted Eratosthenes’ value of the obliquity

*The rounding involved in the more precise value of 23° 51 20* was about 5 arcsec, so
we are being conservative by a factor of 6.

I have used the difference between the latitude of Aswan and the value of 23° 51" in
this calculation, rather than the difference between its latitude and the correct position
of the tropic. The probability would be still smaller if I used the correct position of
the tropic.
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without alteration, what is more natural than to assume that he did the same
for the latitude?

We should also consider the value of the obliquity briefly. Ptolemy
(Chapter I.12) says that he measured the angle between the tropics
several times and that he always found it to be greater than 47° 40’ and less
than 47° 45'. This yields 23° 51’ 15" for the obliquity, which he then alters* to
23° 51’ 20”. This is the value for which the length of the longest day, for a
point on the tropic, is exactly 13} hr. Ptolemy says explicitly that he made
these measurements with a graduated circle (or, more probably, a quadrant).
I have analysed these claimed observations elsewhere (Newton, 1977,
Section V. 6) and shown that it is almost impossible for Ptolemy to have
made them. There is little doubt that he simply adopted the obliquity used by
Eratosthenes, with no attempt to verify it independently.

Britton (1969) has proposed a method by which Ptolemy might have
obtained the value of 23° 51’ 20", and I have analysed his proposed method
in the place just cited. Briefly, Britton suggests that Ptolemy read the zenith
distance of the Sun at some time other than noon, and that he calculated
the change that would occur between then and noon, with the intention
of subtracting it from the measured value. He then, according to Britton,
made a mistake and added the correction instead of subtracting it.

It seems unlikely to me that Ptolemy would have adopted such a com-
plicated procedure instead of simply reading the zenith distance at noon,
especially after taking the trouble to line his instrument up with the meridian.
Even if he did this for some reason, it is highly unlikely that he would have
made the mistake in sign every one of the several times he presumably repeated
the process. Finally, even if we grant all of these conditions, it is highly
unlikely that Ptolemy would have chosen to make his measurements every
time at just the time that would make it yield the precise obliquity that
Eratosthenes had used, an obliquity that corresponds to a longest day, on the
tropic, of exactly 134 hr.

Since we do not know the method by which Eratosthenes is supposed to
have measured the obliquity, the calculations relating to Ptolemy’s measure-
ment do not apply exactly. However, as I have shown, the probability that a
measurement could lie in some erroneous preassigned interval is small
regardless of the details of the measurement process. If the process is highly
accurate, it is not likely that it would yield a value that is seriously in error.
If the process is inaccurate, it could easily yield an error as large as the one
found, but it is unlikely that the error would lie exactly in the narrow pre-
assigned range. Thus it is not likely that the value of 23° 51’ 20" ever resulted
from any careful attempt to measure the obliquity. (See note added in proof.)

In summary, Eratosthenes’ measurement of the circumference of the
Earth involves two latitudes, those of Aswan and Alexandria. His values of
both latitudes are seriously in error and it is not likely that either value
came from a careful measurement. On the other hand, both latitudes corres-
pond to values that we calculate precisely from rounded values of north-south
coordinates that were used before latitude was introduced as a geographic
coordinate. In the case of Aswan, the latitude that Eratosthenes used is the

*Rawlins (1980) suggests this occurred via continued-fraction approximation.
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value that corresponds to taking the length of the longest day as exactly
134 hr. In the case of Alexandria, we do not know the exact latitude that he
used. However, if we take the latitude to be the value which makes the
equinoctial meridian shadow of a gnomon equal to 36 parts (out of 60, so
that tan B = 0-6), we reproduce the angular separation between Aswan
and Alexandria that he used, to satisfactory accuracy. Thus it may be that
Eratosthenes’ data did not come from any measurements that he made.
It may be that they came simply from pre-existing traditions. If so, specula-
tions about the accuracy of his estimate, and about the length of the stade
that he used, are essentially meaningless.
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NOTE ADDED IN PROOF

Ptolemy actually writes that Eratosthenes took the angle between the tropics to be 11/83
of a full circle, and the ratio 11/83 has excited much comment in the literature. Rawlins
(1980) has given what I believe to be the correct explanation of its origin. As he has shown,
it was common in Greek mathematics to express an angle by writing it in the form a X 360°
and then expressing a as a continued fraction.

If we use 23° 51’ 20" for the obliquity, €, the angle between the tropics is 47° 42° 407,
and a = 0-13253 08642. When we expand this as a continued fraction, we get the following
typesetter’s nightmare:

a = 1/{7+[1/(1+ [1{t+[1/(5+ [1/195 . .D}DI}-

If the reader will rewrite this, using horizontal bars instead of slanting ones to denote
fractions, which will allow him to omit the parentheses and brackets, he will find that this
expression is not so formidable as it appears here. The first two approximations are 1/7 and
1/8, which are not very accurate. The third approximation is 2/15, which leads to € = 24°.
The fourth approximation is the famous 11/83, whichleads to e = 23° 51’ 20" when rounded
to the nearest second. In certain types of computation, it was probably easier to use 11/83
than to use 23° 51’ 20", which may account for the use of continued fractions.
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