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Plato: Parmenides 149a7-c3.
A Proof by Complete Induction?

F. Acerbi

Communicated byA. Jones

1. Introduction

It is a generally accepted opinion that the first instance ofconscious useof Com-
plete Induction (henceforth CI) as a proof method is contained in theTraité du triangle
arithmétiqueby Blaise Pascal (1623–1662):

Quoique cette proposition ait une infinité de cas, j’en donnerai une démonstration
bien courte, en supposant 2 lemmes.

Le 1, qui est́evident de soi-m̂eme, que cette proportion se rencontre dans la seconde
base; car il est bien visible, queφ estàσ comme 1̀a 1.

Le 2, que si cette proportion se trouve dans une base quelconque, elle se trouvera
nécessairement dans la base suivante.

D’où il se voit qu’elle est ńecessairement dans toutes les bases: car elle est dans la
seconde base par le premier lemme; donc par le second elle est dans la troisième base,
donc dans la quatrième, et̀a l’infini.1

Pascal then proceeds to prove lemma 2, i.e. the inductive step.
A very different question is to establish whether, before Pascal, convincing exam-

ples ofuseof CI as a proof technique are attested, disconnected from the perception of
the fact that it happened to be a particular instance of a general demonstrative scheme.
Scholars have found proofs fitting in the scheme of CI in almost every geographical
ambit of pre-Pascalian mathematics.2 Some of these proposals, especially those con-
cerning the ancient mathematical corpus, are untenable, even surprising in view of the

1 Pascal 1954, p. 103. The passage is contained in theConśequence Douzième. The treatise
was composed towards the end of 1654 and published posthumously, together with earlier drafts
and related treatises, in 1665, with the titleTraité du Triangle arithḿetique, avec quelques autres
petits trait́es sur la m̂eme matìere. We can find in it four proofs in the scheme of CI, with almost
identical wording and pattern of proof: see also pp. 113–114, 122 and 150–151 in Pascal 1954.

2 See Rashed 1972–73 for Arab mathematics (X–XII century), Rabinovitch 1970 for the
works of Levi Ben Gerson (1288–1344). A pivotal point in the scholarly debate on this sub-
ject is the ascription of proofs by CI to Francesco Maurolico (1494–1575): see Vacca 1909
for the first proposal, and the subsequent discussions in Bussey 1917 and, in a deeper way, in
Freudenthal 1953.
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serious misunderstandings they contain.3 Recently, the polemical tone of the debate has
attained a local maximum: in Fowler 1994versusUnguru 1994 preconceptions of
historiographical method have strongly influenced the evaluation of the relevant instance
of CI. In this sense, both Fowler’s and Unguru’s analyses, though interesting in sev-
eral respects, seem to me to have missed their target. Moreover, a careful survey of the
literature shows that every single scholar sets up his own reading of the principle of
CI, and on this basis he is able to affirm or to deny that specific proofs constitute well
formed examples of it.

My aim is to increase the confusion on this subject. In fact, I suggest to regard a
Platonic passage, i.e.Parmenides149a7-c3, as a full-fledged example of proof by CI.
A comparison with an extremely similar text by Aristotle (An. pr.42b6-16) will allow
me to put forward a conjecture about the sources of the Platonic text.

The paper is organized as follows: in Sect. 2 I discuss the meaning and structure of a
proof by CI, extracting from its “ritual structure” the characteristics I regard as essential.
In Sect. 3 the Platonic passage is presented and analysed. On the basis of the discussion
of Sect. 2, I propose to regard it as the only extant example of proof by CI in the ancient
mathematical corpus.4 In Sect. 4 I briefly discuss other alleged examples of CI in ancient
mathematical and philosophical works.

2. Principles of complete induction and proofs by complete induction

In order to clarify the meaning of the title of this section, compare the following two
deductive patterns (P(.) is a property of natural numbers):

a.
P(1)

∀n ∈ N, P (n) → P(n + 1)

∀n ∈ N, P (n)

b. If some collection of natural numbers satisfies:i. the unit belongs to the collection,
andii. the successor of any number in the collection also belongs to the collection,
then this collection will comprise all of the natural numbers.5

We could be tempted to regard them as equivalent formulations of CI, but the equivalence
involves assumptions or problems like:

3 See for instance the lapse by Stamatis in Euclides, vol. I, p. XXXV. I find unacceptable,
if only because lacking in a supporting discussion, statements like the following: “Cependant on
peut trouver quelques démonstrations par récurrence ou induction complète. On ne retrouvera
jamais le leitmotiv moderne, [. . .] et ceux qui ne voient l’induction complète qu’accompagńee
de sa rengaine auront le droit de dire qu’on ne la trouve pas dans les Eléments. Pour nous, nous
la voyons dans les prop. 3, 27 et 36, VII, 2, 4 et 13, VIII, 8 et 9, IX. [. . .] Dans tous les cas le
raisonnement est mené jusqu’au point òu sa ŕeṕetition mécanique assurera sa géńeralit́e.” (Itard

1961, pp. 73–74).
4 I prefer not to use the term “ancient Greek mathematics”. I intend to refer to a very concrete,

tangible object, not to a conceptual framework or to a specific way of doing mathematics. I agree
with O. Neugebauer that “a concept as “Greek mathematics” [. . .] seems to me more misleading
than helpful.” (Neugebauer 1969, p. 190.)

5 This is the fifth Peano axiom as given in Fowler 1994, p. 263.
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1. Every property defines a set, and the converse.
2. The concept of “collection of all natural numbers” does not give rise to problems

and can be freely used instead of quantification over every single natural number.
3. The difference between formalized and informal statements is not a substantial issue.

Moreover, it is crucial to remark that neither a. nor b. represent a formalization of the
Principleof CI (henceforth PCI): to this purpose it is necessary to premise a statement
specifying that the propertyP(.), or the collection we are dealing with, is generic.

If employed in connection with the ancient mathematical corpus, any of these def-
initions of CI is misleading: a consideration of the above very partial list of “modern”
problems they carry with themselves will suffice. It is thus necessary to refer to a “defi-
nition” formulated in a language which is the most informal possible, in particular with
respect to the problem of expressing the different levels of generality. To this end it is
useful to start with the claim by Stamatis: “inductio completa primum ab Aristotele
commemorata est:τòκαθóλoυ δǫ̀ �υπάρχǫι τóτǫ, �oταν �ǫπὶ τo

˘

υ τυχóντoς καὶ πρώτoυ

δǫικνύηται (Anal. Poster. 73b32).”6 This is a serious and surprising mistake. In fact,
the statement is transparent, even considering the extreme density of the Aristotelian
style; we could translate it “[a predicate] applies universally whenever it is shown [to
apply] in a generic case and in a primary way”, where “primary” means that the relation
between subject and predicate must be regarded as immediate with respect to the prop-
erties which define the essence of the subject.7 In a proof formalized in a modern way,
the generality alluded to by the definition inAn. post.73b32 is secured by the presence
of universal quantifiers acting upon the free variables; in an informal context, generality
is guaranteed by recognizing that a proof which does not use some specific property
of a mathematical object holds also for every object of the samegenusnot sharing that
particular property.8 Explicit awarenessof this fact,9 and its massiveusein technical
contexts, are a fundamental achievement of Greek thought.

In the particular case of CI, its character of generality follows from the remark that,
both in the inductive step and in the conclusion,n acts as a “free variable”. Only in
this sense CI instantiates the Aristotelian prescription (which then assumes thestatus
of statement belonging to what is nowadays termed “proof theory”)10: very much as
every general proof does, CI proceeds by instantiation and subsequent generalization
over the “free variables” (which, in other contexts, may even be geometrical figures, as
in the examples Aristotle provides during his proof). But it is completely erroneous
to maintain the converse, i.e. thatAn. post.73b32 formalizes PCI.

6 Euclides, vol. I, p. XXXV.
7 The example provided in 73b33-39 to clarify the meaning of this statement is completely

unambiguous.
8 Problems could arise at the moment of specifying the most generalgenusof objects the

proof may be applied to (see also the discussion in Sect. 4).
9 See for instance Proclus 1873, 207.4-25. A recent analysis of the “shaping of generality

in Greek mathematics” is carried through in Netz 1999, chap. 6. I do not agree with some of his
conclusions, and I am currently working on this subject.

10 For Aristotle as “proof theorist”, see for instance Smith 1984, Smith 1986, or Smiley

1994 and references therein.
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On this basis, I think the following sequence could correctly describe the series of
steps which are necessary to achieve a proof by CI:

A. To set the basis of induction.
B. To enunciate the inductive step and to explicitly recognize its generality (≈ universal

quantification≈ An. post.73b32).11

C. Toprovethe inductive step and to explicitly recognize the generality of the proof (≈

universal quantification≈ An. post.73b32).
D. To recognize the generality of the conclusion (≈ universal quantification≈ An. post.

73b32).

Step A is often trivial; the real proof is developed in B and C. D is matter of “formal
awareness”, restricted to the context of onespecificproof in the scheme of CI; it may be
expressed in an informal way: but it is crucial that its statement be explicit and clearly
verbalized.12 The sequence A–D is not,a priori, beyond thepossibilitiesof the ancient
mathematical corpus. But, as we have seen, an additional move is needed to recognize it
as a valid demonstrative scheme (i.e. to establish a sort of PCI): actually, a further applica-
tion ofAn. post.73b32 is enough, where the generalization is made on thatspecificprop-
erty, whose applicability to every natural number had been proved in A–D (≈ universal
quantification on the “variable”P(.) in version a. of CI). This step (of a metamathematical
character) is never explicitly made in the ancient mathematical corpus.13

11 In the following, I shall denote in this way the implicit or explicit ascription of generality
to a statement, whenever it results from a (possible) application of an argument of the kind of
An. post.73b32. I do not claim the usage is always explicit (it is almost never explicit). It is a
convenient shorthand, and there is no anachronism to invoke it in dealing with Plato.

12 In the case of informal arguments, things go even worse: indeed, “essendo l’obiettivo quello
di riconoscere una regola logica in sequenze discorsive che non hanno mai la scansione netta dei
passaggi delle dimostrazioni matematiche,è inevitabile ricorrere a ricostruzioni e precisazioni di
significati che sono atti interpretativi, e quindi in certa misura soggettivi” (see p. 177 in Bellis-

sima-Pagli 1996). The history of the logical rule calledConsequentia Mirabilis((¬A → A) → A;
it appears inElem. IX.12, 36) reconstructed in that book has several points of contact with that of
CI.

13 Someone could (misleadingly) venture that the situation was not so clear even to Pascal:
indeed, in the passage we have quoted, he speaks of “cette proposition” and clearly does not
“quantify” on it – i.e. he does not establish CI as aprinciple; moreover, a little earlier (Pascal

1954, p. 101;Conśequence Huitìeme) he proves a proposition using Incomplete Induction (“Et
ainsià l’infini”); the same thing happens in Lemme IV, which immediately precedes Proposition I
(p. 113). Finally, it is very relevant that Pascal “proves” the validity of his demonstrative scheme
by CI appealing to an argument byIncomplete Induction: see the last paragraph of our quotation.
Equally relevant is the fact that he never “proves” his “second lemme” – the inductive step – for
a genericn; rather he deals with a particular case (for instance, fromn = 4 ton = 5 in the proofs
at pp. 103 and 113–114), of which he soon afterwards declares the generality: “On le montrera
de m̂eme dans tout le reste, puisque cette preuve n’est fondée que sur ce que cette proportion se
trouve dans la base préćedente, et que chaque cellule estégalèa sa pŕećedente, plus̀a sa superieure,
ce qui est vrai partout.” – which is a paradigm instance of application ofAn. post.73b32. Hence,
Pascal does not recognize independence or priority – even intuitive – to the argument by CI,
regarding it as a shorthand and a convenient form of formalization of the argument by Incomplete
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Very strong objections against the merepossibilitythat “ancient Greek mathemat-
ics” could develop single proofs by CI (even in absenceof an explicit recognition of its
validity as a demonstrative scheme) have been raised in Unguru 1991.

The first argument, constituting in my opinion the core (pp. 280–284) of his paper,
is summarized by the author as follows: “without a number that can serve as an inde-
pendent variable, it is impossible to formulate a true proof by mathematical induction,
in which the claim requiring proof is a function of the natural numbers” (p. 284). This
happens because of the “wide, and historically unbridgeable, gap between the Greek and
the modern conceptualization of number” (p. 281). The latter is “indeterminate, general,
abstract” whilst the former “is always a ‘number of”’ (p. 284). I think that, as it stands,
Unguru’s argument must be rejected:

– whenever it is supported only by mathematical sources, it is based on an undue ap-
plication of inductive reasoning: from the fact that a well determined set is empty
(the sources analysed by Unguru in which CI is extant) it is inferred that every set
containing it is empty. As a consequence,

– the author presents a series of meta-historical, meta-theorical, meta-textual, meta-
contextual arguments, providing an aprioristic direction to the analysis of every
possible textual evidence.14 These supporting arguments are based on a handful
of quotations from primary sources,15 whereas a detailed exegesis is devoted to
the relevant passages of Klein 1968, with further references to Wittgenstein and
W. C. Booth. This way, an easy historiographic hypothesis results, which the empir-
ical basis provided by the ancient mathematical corpus will never be able to falsify.
The latter seems to be the main flaw of the “quasi-intentional approach” advocated
by Unguru (p. 289).

– Even accepting Unguru’s thesis as well founded, the obstruction arising from the
fact that “the claim requiring proof is a function of the natural numbers” still allows
for a way out: this happens when the “function” (i.e. the propertyP(.)) is very simple,
for example if it maps every number into itself, that isP(n) = n; or it is a “slight
variation” of the latter mapping,P ∗(n) = n−1 for instance; or it is a combination of
both, such asP ∗∗(n) = P(n) − P ∗(n) = 1. The arithmetical and meta-arithmetical
level are not easy to disentangle in this case: in order to use a “function” which maps
every integern into itself it is not necessary to conceive the numbers in an abstract

Induction: compare the statements at p. 122 “Quoique cette proposition ait une infinité de cas, je
la démontrerai ńeanmoinsen peu de motspar le moyen de deux lemmes” and at p. 150 “Quamvis
infiniti sint hujus propositionis casus, [. . .], brevitertamen demonstrabo, positis duobus assump-
tis.” (italics mine). These considerations are worthy of further elaboration, but here this hint will
suffice. See also the following note 21 and the well-balanced remarks made in Rashed 1972–73,
section IV.

14 It is not a coincidence that textual considerations, which I regard as crucial in the present
case, are almost absent from Unguru’s paper.

15 Most (provided it is meaningful to make use of this term with such a poor sample) of them are
philosophical sources: Aristotle: Meth. 1020a13 and 1057a2-5; Alexander of Aphrodisias:
In Meth. 86, 5–6 (Hayduck). Luckily also Euclides: Elem. VII def. 2 is included.



62 F. Acerbi

way, nor to have any concept of “function” at all.16 In other words, Unguru fails
to distinguish between PCI and CI, and applies arguments to the latter which should
properly have been applied to the former.

The second objection (p. 278) is well summarized by the statement “Its [of a CI]
conclusions [. . .] are valid for all natural numbers. Needless to emphasize that the con-
cept of ‘all natural numbers’ is foreign to Greek mathematics.” The last claim is correct,
but its relevance to our problem is not clear: an easy way out is to make use of a wording
which does not refer to the set of all natural numbers, and to state that the property under
analysis is truefor every singleinteger:17 a possibility that ancient Greek language easily
allowed for, see for instanceElem.IX.8.18

On the other hand, in Fowler 1994, which is an explicit confutation of Unguru

1991, reconstructions in the scheme of CI – using techniques which are well rooted in
the ancient mathematical corpus – are presented (pp. 254–257), both of a proposition
which is not attested19 and of the well known relationship between side numbers sn and
diagonal numbers dn: (dn)

2 − 2(sn)
2 = ±1.

Fowler supports his reconstructions by observing (pp. 261–264) that:i. in theEl-
ementsuse is made of the Principle of Descent (PD) (Elem.VII.31) and of the well-or-
dering principle (Elem.VII.31 A��	
)20; ii . “these two principles are now generally,
though not universally, perceived as being equivalent to each other and to mathematical
induction.” Remarking that “before the nineteenth century, we find a more ‘natural’ ap-
proach to the natural numbers”, he concludes: “It is in this sense that I believe that the
Greeks did use principles equivalent to mathematical induction, and that they could have
used mathematical induction itself had the situation presented itself. Moreover, such a

16 The arguments we can find in Mueller 1981 appear better balanced, although in many
respects close to those advocated by Unguru. Referringonly to theElements, he says that “[. . .]
numbers are not characterized as generated from units in a serial order. They are simply finite ag-
gregates of units.” (paraphrase ofElem. VII def. 2: �αριθµòς δǫ̀ τò �ǫκ µoνάδων συγκǫίµǫνoν
πλ

˘

ηθoς) “Of course, there are important relations between these aggregates, but the relation of
successor is not one which plays an important role in theElements. Thus it can be said that the
integers themselves are not conceived in the structural way conducive to the use of induction, but
that there is inductive reasoning about collections or sequences of positive integers. This difference
might be compared to the difference in formal theories between the use of induction in the object
language and its use in the metalanguage” (p. 69). In this way, Mueller denies that Euclides

could consciously use theprincipleof CI, but does not assert that could be impossible for him to
present proofs in the scheme of CI. In fact, not even this latter case does occur in theElements(see
Sect. 4), and Mueller rightly points out that “where Euclid proceeds in this quasi-inductive way,
the implicit induction is on the number of terms involved in a construction or assertion and not on
the integers themselves” (p. 69). As we shall see, where Plato proceeds in afully inductive way,
theexplicit induction will be precisely of this kind.

17 The same difference exists between version a. and b. of PCI.
18 o �ι πǫ́ντǫ διαλǫίπoντǫς πάντǫς [scil. �αριθµoὶ] in Euclides II, pp. 194.17, 195.20.
19 “If as many numbers as we please beginning from a unit be set out, their sum will be a

triangular number” (p. 254).
20 This alternative proof is deemed interpolated by Heiberg, since it appears only in the The-

onine manuscripts: “ante prop.λα´add. Theon” (Euclides II, p. 237).
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situation did present itself, in the properties of figured numbers and side-and-diagonal
numbers [. . .] I believe it very probable that some earlier, now lost, treatment of some of
these topics, in particular the side-and-diagonal numbers, did in fact prove the described
properties – [. . .] – and that these proofs could very probably have been by some form
of mathematical induction.”

I think that Fowler’s argument must be rejected:

– an equivalence between PCI and PD may be established only after the validity of both
of them as patterns of proof is accepted, and after an outline is provided of a proof
(even informal) of their equivalence. To require this, even before the 19th century, is
not a “historical solecism” but a necessary condition for the argument’s consistency.
If this does not occur, so much the worse for the argument.21

– Conjecturing is often necessary but the risk of losing contact with the extant textual
data is always present. As we have said, Fowler sets up (pp. 254–255) the reconstruc-
tion, in an inductive frame, of a proposition not existing in the ancient mathematical
corpus but “modelled [. . .] on Heath’s translation ofElementaIX.36”. Concluding
his analysis, he confesses that “these kinds of arguments are not explicitly attested in
Greek mathematics, but the later commentators [. . .] give abundant though unsophis-
ticated testimony to an earlier ‘pebble (psephoi) arithmetic’ using these ingredients.”
It is quite the contrary: the evidence that proofs of the kind he develops in his re-
construction arenot attested is a strong argumentagainstthe presence of CI as a
widespread proof technique.

21 I think instead that the counter-objection in Unguru 1994, p. 271 cannot be regarded as
valid. He maintains that PD and PCI “are not conceptually the same procedure”, since PD “deals
with a finite number of cases”, while PCI “covers an infinity of cases”. In fact, even a proof by CI
explicitly deals with only a finite number of cases (indeed only one, in the proof of the inductive
step). Precisely the awareness of the quasi-general character of this proof introduces the infinitary
component in CI. But the same happens in PD, since this latter is a valid step in a deductive chain
exactly because of the character of generality granted to it by its being true foreverydecreasing
sequence of integers. In both kinds of proof one passes from instantiation to the general case
precisely via application ofAn. post. 73b32. Rather, I believe that PCI and PD cannot be regarded
as “equivalent” (I consider it obvious that they cannot be historically equivalent) for a different
series of reasons: they are not so 1) from the point of view of intuitive evidence – which, when one
has to “choose” a proof technique instead of another, has a decisive weight; 2) since they involve
very different logico-mathematical concepts. We cannot presume that different concepts can be
grasped with equal ease (for instance the concept of decreasing sequence in PD or the notion
of property defined on an infinite collection of objects in PCI; or, as Mueller (p. 78) rightly
points out, “unlike the principle of induction, the least number principle or the denial of infinitely
descending chains does not seem to depend upon a genuinely structural conception of the positive
integers. For these principles can be understood solely in terms of the Euclidean conception of
numbers as finite concatenations of units”); 3) since every distinct technique employed to prove
the same theorem gives it a different meaning, (if nothing else) because it changes the net of
propositions needed to achieve the proof. Moreover, 4) to speak of equivalence is meaningful only
after PCI and PD have been recognised as such, and after logical techniques have been developed
to give sense to this equivalence. Even in this case, an equivalence proof can be higly nontrivial
(even worse if we want it formalized: one should take a look at §40 in Kleene 1952).
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Summarizing, the conception of number we may extract from the ancient mathemat-
ical corpus seems to rule out the possibility that aprincipleof CI could be used.22 Indeed,
the latter is never attested, not even in a rudimentary stage.23 Proofs in the scheme of CI,
working on the number of terms involved in a statement and not on the integers as such –
even proofs such that the steps from A to D above outlined are verbalized and formalized
in a way which is coherent with what wethink to be the ontology underlying “ancient
Greek mathematics” – seem to be well within the range of possibilities.24 Surprisingly,
the only full-fledged example, though very simple, does not appear in a mathematical
work, but in Plato’s Parmenides.

3. Analysis of Plato,Parmenides, 149a7-c3

The Platonic passage – bracketed numerals are inserted for reference – is the fol-
lowing:

(1) �ύo �αρα δǫ

˘

ι τò �oλίγιστoν ǫ

˘

�ιναι, ǫ �ι µǫ́λλǫι �αψις ǫ

˘

�ιναι. – �ǫ

˘

ι. – (2) ’Eὰν δǫ̀

τo

˘

ιν δυo

˘

ιν �oρoιν τρίτoν πρoσγǫ́νηται �ǫξ

˘

ης, α �υτὰ µǫ̀ν τρία �ǫσται, α �ι δǫ̀ �αψǫις δύo. –
Nαί. – (3) Kαὶ o �υτω δὴ �αǫὶ �ǫνòς πρoσγιγνoµǫ́νoυ µία καὶ �αψις πρoσγίγνǫται, (4)
καί συµβαίνǫι τὰς �αψǫις τo

˘

υ πλήθoυς τ

˘

ων �αριθµ

˘

ων µι

˘

α̨ �ǫλάττoυς ǫ

˘

�ιναι. (5)

˘

�ω̨ γὰρ

τὰ πρ

˘

ωτα δύo �ǫπλǫoνǫ́κτησǫν τ

˘

ων �αψǫων ǫ �ις τò πλǫίω ǫ

˘

�ιναι τòν �αριθµòν �η τὰς

�αψǫις, (6) τ

˘

ω̨ �ισω̨ τoύτω̨ καὶ �o �ǫπǫιτα �αριθµòς π

˘

ας πασ

˘

ων τ

˘

ων �αψǫων πλǫoνǫκτǫ

˘

ι.

(7) �ηδη γὰρ τòλoιπòν �αµα �ǫν τǫ τ
˘

ω̨ �αριθµω̨̆ πρoσγίγνǫται καὶ µία �αψις τα
˘

ις �αψǫις.
– ’Oρθ

˘

ως. – (8) �Oσα �αρα �ǫστὶν τὰ �oντα τòν �αριθµòν, �αǫὶ µι

˘

α̨ α �ι �αψǫις �ǫλάττoυς

ǫ �ισὶν α �υτ

˘

ων. – �Aληθ

˘

η.25

(1) Then they must be two, at least, if there is to be contact. – They must. – (2) And if
to the two terms a third be added in immediate succession, they will be three, while the
contacts [will be] two. – Yes. – (3) And thus, one [term] being continually added, one
contact also is added, (4) and it follows that the contacts are one less than the number
of terms. (6) For the whole successive number [of terms] exceeds the number of all the
contacts as much (5) as the first two exceeded the contacts, for being greater in number
than the contacts: (7) for afterwards, when an additional term is added, also one contact
to the contacts [is added]. – Right. – (8) Then whatever the number of terms, the contacts
are always one less. – True.26

22 If applied to theprincipleof CI, some of Unguru’s arguments seem to be well-founded. But
he intended to apply them to the very different question of the existence of proofs in the scheme
of CI, and I think that the passage by Plato I shall presently discuss confutes them.

23 But the statement of the principle of CI must obviously have been preceded by more or less
explicit applications of CI, as is natural in thehistoricaldevelopment of a mathematical object or
of a proof technique.

24 I completely agree with Mueller’s remarks quoted in note 16.
25 Greek text from Plato, Parmenides(Burnet).
26 I have reworked the translation in Plato 1926, p. 275.
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Remarks

a. The text is embedded in the discussion of the consequences of the second hy-
pothesis Parmenides envisages in his inquiry about the nature of the “one”: “if the one
exists” (142b3).27 In particular, it is the main argument supporting the conclusion: “the
one touches and does not touch itself and the others” (149d6).

b. The reasoning has the following structure (the congruences with the scheme A–D
outlined in Sect. 2 are conspicuous):

A. The basis of induction is established in (1). In (5) this very fact is explicitly
recognized (τὰ πρ

˘

ωτα δύo); moreover,

˘

�ω̨ γὰρ plays the role of pointing out that (1) or
(2) are crucial steps in the proof. As will become clear in (4), the property to be regarded
as relevant is the following: (number of terms)− (number of contacts) = 1.

B. The validity of the inductive step is shown as evident in two particular cases
(n = 2 andn = 3) in (1) and (2) andstatedin general in (5)–(6), where�o �ǫπǫιτα. . .π

˘

ας

πασ

˘

ων has the function to make generality explicit, even if, byvariatio with respect to
(3) (see below), the attributive form substitutes the adverbial form. The transition from
(1)–(2) to (5)–(6) is very subtle: it constitutes the logical center of the argument and it
is verbalized in a slightly compressed form: it is worth a detailed discussion.

�o �ǫπǫιτα �αριθµòς π

˘

ας presents two difficulties: the role of�ǫπǫιτα and ofπ

˘

ας.
The former is conveniently rendered as “successive”, but it may refer both to a gener-
ic successive integer, and to a “successive” in the sense of a repetition of the scheme
employed in (1)–(2)28 and synthesized in (5), to which (6) is explicitly set in parallel:
in the same way in whichn = 3 is obtained by adding in succession (πρoσγǫ́νηται
�ǫξ

˘

ης) a third term ton = 2, �o �ǫπǫιτα �αριθµòς is what one obtains assuccessivefrom
theprecedingcase by adding a single unit. Such an interpretation is strengthened by the
explicit correlationτὰ πρ

˘

ωτα. . . �o �ǫπǫιτα, which links both the results and the proofs,
and which qualifies the number under consideration as asecondterm in a logico-tem-
poral sequence whose paradigm instance is displayed in (2). The wayπ

˘

ας is employed
provides further clues. Indeed, its use in conjunction with the article�o, its postponement
and the position, correlated to the subsequentπασ

˘

ων, give strong support to the choice
of translation “the whole successive number” (i.e. the whole aggregate of units which
constitutes it). In this way, (6) refers to the transition to “the whole successive number”
as far as it is obtained, as a whole, adding a further unit, in the way explained in (2) as a
particular case. To assume, instead, the meaning “every” forπ

˘

ας would make conclu-
sion (8), already contained in (6) as a particular instance, completely useless. A further
element of generalization is present in (5)–(6): it is not declared that in the “first two”

27 �ǫν ǫ �ι �ǫστιν (142b3). It is not relevant to my purposes to discuss the question whether the
above translation provides the correct meaning of the Platonic expression.

28 In fact, the reference to “the first two” in (5) carries out a twofold function: first because
both cases verify the requested property, but also in the way in which this fact is proved to occur:
the casen = 2 is assertedto be true, whilen = 3 is provedfollowing the scheme of (2). And in
this scheme one passes from an integer to the next. I find unlikely that “the first two” can refer to
the first two “terms”, i.e. to the state of affairs described in (1): it would be difficult, for instance,
to explain the presence in (5) of�αψǫων in the plural, since only one contact is present.
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cases the difference must be equal to the unit; the property of invariance of the difference
is proved whichever the initial difference may be: in fact, the proof that follows does not
employ the fact that the initial difference is a well determined number (a further instance
of “application” ofAn. post.73b32). This remark gives weight to my contention that “the
first two” in (5) is a reference to the logical and argumentative connection established
in (1)–(2), rather than to a pleonastic duplication of the basis of the induction.

C. The proof of the inductive step and the statement of its generality are provided
in (3), where �αǫὶ combines the idea of extratemporal validity with that of indefinite-
ly repeated operation; and in (7). The latter is explicitly connected with (5) and (6),
qua their proof, by the use ofγὰρ, whereas �ηδη. . .τò λoιπòν is employed in a sense
which abstracts from the primary (temporal) meaning of the words to assume a logical
function:29 τò λoιπòν refers to a series of demonstrative steps as (2).

D. The generality of the conclusion is expressed in (8), which enlarges the field of
validity of (4) and slightly paraphrases it. In (8), the role of quantifier is played by the
completely unambiguous phrase,�Oσα. . . �αǫὶ. . . . Theparticle �αρα establishes that (8)
is a logical consequence of what has been said before. We see then that several phrases
can work as “quantifiers”; among them, the more explicit ones employ the words�αǫὶ

andπ

˘

ας, which will hold this technical meaning even in more formalized contexts.

I propose a concise “interlinear”, formalized in a modern way, of the Platonic pas-
sage. As should be clear, this rephrasing tendentiously separates the variable labelling
the property from the objects the latter applies to; as it stands, it strains the reading of
the Greek text, in which an induction on the number of terms in contact is employed,
not an induction on the natural numbers. Nevertheless, I think it worth giving since it
conveniently synthesizes the logical structure of the proof.

0. One needs to show thatP ∗(n) = P(n) − 1, whereP(n) = number ofn terms
in contact, andP ∗(n) = number of contacts ofn consecutive terms (these symbols are
shorthands of the corresponding wording).

A. (1) If n = 2, P(2) = 2 andP ∗(2) = 1.
B. (2) If n = 2+ 1 (’Eὰν δǫ̀ τo

˘

ιν δυo

˘

ιν �oρoιν τρίτoν πρoσγǫ́νηται �ǫξ

˘

ης),
P(2+ 1) = 3 (α �υτὰ µǫ̀ν τρία �ǫσται) and P ∗(2 + 1) = 2 (α �ι δǫ̀ �αψǫις δύo). (5)
Following the same scheme as in (2) (the correlativesτὰ πρ

˘

ωτα δύo. . . �o �ǫπǫιτα and˘

�ω̨. . .τ

˘

ω̨ �ισω̨ τoύτω̨), [in the more general case] in whichP(2) − P ∗(2) = m (

˘

�ω̨) and
henceP(2 + 1) − P ∗(2 + 1) = m, (6) [one obtains] also (καὶ) P(n + 1) ( �o �ǫπǫιτα
�αριθµòς π

˘

ας) − P ∗(n + 1) = (πασ

˘

ων τ

˘

ων �αψǫων πλǫoνǫκτǫ

˘

ι ) m (τ

˘

ω̨ �ισω̨ τoύτω̨).
C. (3/7) Indeed (Kαὶ o �υτω δὴ/γὰρ), for everyn ( �αǫὶ + participle/ �ηδη. . .τò λoι

πòν),P(n+1) = P(n)+1( �ǫνòςπρoσγιγνoµǫ́νoυ/ �ǫν. . .τ

˘

ω̨ �αριθµ

˘

ω̨ πρoσγίγνǫται) if
and only if (genitive absolute with temporal shade. . .καὶ/ �αµα. . .τǫ. . .καὶ) P ∗(n+1) =

P ∗(n) + 1 (µία. . . �αψις πρoσγίγνǫται/µία �αψις τα

˘

ις �αψǫις).
D. (4/8) It follows (καὶ συµβαίνǫι/ �αρα), for everyn (in explicit form it is absent,

but notice the use of the determinate article in the subsequent subordinate/ �Oσα . . .

29 We could say “a tempore transfertur�ηδη ad causarum vel ratiocinandi seriem et conse-
quentiam” (Bonitz 1870sub voce �ηδη).
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�ǫστὶν τὰ �oντα τòν �αριθµòν, �αǫὶ), P ∗(n) = P(n) − 1 (τὰς �αψǫις τo

˘

υ πλήθoυς τ

˘

ων
�αριθµ

˘

ων µι

˘

α̨ �ǫλάττoυς ǫ

˘

�ιναι/µι

˘

α̨ α �ι �αψǫις �ǫλάττoυς ǫ �ισὶν α �υτ

˘

ων).

c. It is clear that this proof does not invoke a particular instance regarded as generic
(with a tacit reference to something likeAn. post.73b32; most quasi-inductive proofs
contained in theElementsare framed in this way – see below), or after which phrases
like “and so on” are called on. Rather, there are two proofs nested the one in the other:
(1)–(4) set out a proof by CI of (4) (we have to include also this latter since in this case
the συµπǫ́ρασµα plays the role of an absentπρóτασις); (5)–(7) explicitly state (5),
(6) and prove (7) the inductive step in full generality, and this requires in any case a
separated argument – this fact is made apparent by the use ofγὰρ, which introduces in
(5) the sub-proof. Moreover, notice that in (1)–(4) the inductive step is verbalized (3) by
reporting a sketch of itsproof (generalized through the use of�αǫὶ).

d. It is crucial, on the basis of our discussion in Sect. 2, that the “numerical variable”
labelling the property coincides with the concrete object (τò πλ

˘

ηθoς) representing the
extension of the concept identified by the property itself, so that the induction is on
the number of terms in contact. This sort of merging is reflected in the terminological
ambiguity connected with the transition from the grammatical subjects�oντα, �oρoι (or a
gender neuter with implied subject) to�αριθµoὶ (in 6–7) and then back to�oντα.30 Notice
also the passage fromτo

˘

υ πλήθoυς τ

˘

ων �αριθµ

˘

ων31 to �αριθµoὶ. We are faced with an
oscillation of meaning from “item or term in a series” to “amount, sum”, which makes
the presence ofπλ

˘

ηθoς unnecessary.32 Relevant in this sense is the use of a different
gender (�ǫν versusµία) to denote the “one” which is to be added to the terms or to the
contacts.

e. The whole argumentdoes notimply the conclusion Plato draws from it in 149c4:
“But if only the one exists, and not the dyad, there can be no contact.” The latter is an
immediate consequence of (1), but cannot be deduced from (8), which holds for every
successivenumber. Yet, the passage employs a lexicon, a syntaxis and a logical linking
of the arguments revealing a good degree of formalization. This suggests that Plato

does not really master the proof he is elaborating, and that the latter is a (reworked)
excerptumfrom some other source. The following remarks point to the same end:

i. The proof is very simple and is expounded in a pedagogical way (the interlocutor
is a boy): the conclusion is drawn in (4) and repeated almostverbatimin (8). The only

30 Remark here the extraordinary writing technique: the transition occurs in (5), where the role
of τòν �αριθµòν is ambiguous, since it can be construed both as an accusative of relation – and
in this case the subject should be stillτὰ πρ

˘

ωπα δύo – , and as the subject of the subordinate
τò πλǫίω ǫ

˘

�ιναι – very much as in (6)–(7).
31 I follow the lectioof the best manuscripts. Heindorf’s emendationτòν �αριθµòν does not

change the substance of the argument.
32 See LSJsub voce �αριθµòς and recall alsoElem. VII def. 2.
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difficulties are of a logical order, and this is natural with a kind of proof probably
regarded as unusual.33 Recall, for the sake of comparison, that the property of ratios
established inParmenides154d1-7, very important for a reconstruction of pre-Euclidean
proportion theory,34 is stated without proof.

ii. The wording has several peculiarities: the formσυµβαίνǫι + infinitive is em-
ployed in the technical meaning of denoting a logical consequence. It is not anunicum
in the Platoniccorpus,35 but inParmenidesthere are no further occurrences of this con-
struction, a surprising fact if one envisages the character of the dialogue.36 The form �αǫὶ

+ participle in 149b2 is well attested in the technical literature as standard wording
for an indefinitely repeated operation. It is important to notice that this wording is present
also in other relics of pre-Euclidean formalized mathematics.37 The impersonal use, and
without any moral hue, ofπλǫoνǫκτǫ́ω has no analogue in the Platonic dialogues, nor
is it attested in early technical works.38 I regard it as unlikely that this verb could have
been contained in the source; maybe it has been introduced by Plato as avariatio.39

Also the use ofπρoσγίγνoµαι in this meaning is not attested as common in thetech-
nical literature, standardized onπρoστίθηµι. I suggest that in this case we do not have
a reworking by Plato, rather a testimony of a terminological field not yet well settled
(see further comments in the following point f).40

iii. A fraction of the text (5)–(7) has a more abstract character: we can observe
a transition, in (6)–(7), to a coherent use of�αριθµòς in order to denote the “ob-
jects” in contact; moreover, (5)–(7) prove the truth of statement (4) as a particular case
(

˘

�ω̨. . . �ǫπλǫoνǫ́κτησǫν. . .τ

˘

ω̨ �ισω̨ τoύτω̨. . .πλǫoνǫκτǫ

˘

ι ) and do not make use of the fact
that the difference is equal to one. This suggests the existence of a source in which the
argument had been discussed at a greater degree of generality.

33 This fact explains its length, and the careful setting out of the relevant steps.
34 See Fowler 1987, pp. 42–44, 64, 320.
35 See for instancePhaedo74a2-4.
36 The verbσυµβαίνω occurs at several places inParmenides. However, its presence is re-

stricted to the short summaries Parmenides provides in order to pinpoint the development of the
discussion (seeParmenides136a–c, 137b4, 142b–c, 160b5, 163c1; in 143d4 the verb assumes the
meaning “to occur”), and in them only the participleτὰ συµβαίνoντα, or an (indirect) interrog-
ative phrase (such asτὶ χρὴ συµβαίνǫιν) are employed. The relevant fact is thatonly in this
passage a relation of consequence is expressed throughσυµβαίνǫι + infinitive; elsewhere, the
particles o�υκo

˘

υν, �αρα or the form �ανάγκη + infinitive are used.
37 See Appendix IV (pp. 235–244) in Knorr 1978, in the context of a detailed comparison

of the several forms of wording of the bisection principle. Knorr’s analysis suggests that the
following texts can be ascribed to pre-Euclidean formulations: those inElementaXII, most of
those extant in the Archimedeancorpusand the Lemma toSphaericaIII. 9 of Theodosius. It
is more difficult to decide whether a direct quotation from Antiphon is present in the relevant
passage in Simplicius, In Phys. 55 (Diels).

38 For use in later authors, see e.g. Iamblichus, Theologoumena arithmeticae, 83.14 (De
Falco).

39 An indication in this direction is the presence in (5) of the accusativeτòν �αριθµòν, whose
function is to clarify in which sense the terms “exceed” the contacts.

40 See Aristoteles, Phys. 245a13 and 260a32 for a very similar usage ofπρoσγίγνoµαι
in a non-mathematical context.
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f. The term �oρoς in 149a8 is attested in the best manuscripts41 and provides us with
a clue to set out a sensible conjecture about the sources of the Platonic passage. In fact,
let us read the following Aristotelian extract, in which bracketed numerals have been
inserted in order to make a comparison with the corresponding propositions in the text
of Parmenideseasier:42

[. . . ] τò µǫ̀ν πλ

˘

ηθoς τ

˘

ων �oρων �ωσαύτως �ǫνὶ �υπǫρǫ́ξǫι τὰς πρoτάσǫις ( �η γὰρ �ǫξωθǫν

�η ǫ �ις τò µǫ́σoν τǫθήσǫται �o παρǫµπίπτων �oρoς. �αµφoτǫ́ρως δǫ̀ (4′) συµβαίνǫι �ǫνὶ

�ǫλάττω ǫ

˘

�ιναι τὰ διαστήµατα τ

˘

ων �oρων, α �ι δǫ̀ πρoτάσǫις �ισαι τo

˘

ις διαστήµασιν).

o �υ µǫ́ντoι α �ιǫὶ α �ι µǫ̀ν �αρτιαι �ǫσoνται o �ι δǫ̀ πǫριττoί, �αλλ � �ǫναλλάξ, �oταν µǫ̀ν α �ι

πρoτάσǫις �αρτιαι, πǫριττoὶ o �ι �oρoι, �oταν δ � o �ι �oρoι �αρτιoι, πǫριτταὶ α �ι πρoτάσǫις.

(7′) �αµα γὰρ τ

˘

ω̨ �oρω̨ µία πρoστίθǫται πρóτασις, �αν �oπoθǫνo

˘

υν πρoστǫθ
ι

˘

η �o �oρoς,
�ωστ � (5′) �ǫπǫὶ α �ι µǫ̀ν �αρτιαι o �ι δǫ̀ πǫριττoὶ

˘

�ησαν, (6′) �ανάγκη παραλλάττǫιν (7′′)
τ

˘

ης α �υτ

˘

ης πρoσθǫ́σǫως γινoµǫ́νης. 43

. . . the number of the terms will exceed that of the premisses, as before, by one (for
each further term which is introduced will be placed either externally or intermediately;
but in either case (4′) it follows that the intervals are one fewer than the terms, and there
are as many premisses as intervals); the former will not, however, always be even and
the latter odd, but alternately when the premisses [are] even the terms [will be] odd, and
when the terms [are] even the premisses [will be] odd ((7′) for wherever a term is added
one premiss is added as well together with the term), so that (5′) since the premisses were
even and the terms odd, (6′) they must change accordingly (7′′) when the same addition
is made to both.44

i. Aristotle is briefly discussing the relationship between number of terms, pre-
misses and conclusions in the case of a complex syllogism. The logical structure of the
argument is incomplete, very compressed in the crucial points and excessively expanded
on trivial questions. The feeling is strong that Aristotle is reworking and mixing two
arguments, leaving unexpressed the most important parts of them. The simplest among
the arguments is reduced to the remark that “when the premisses [are] even the terms
[will be] odd, and when the terms [are] even the premisses [will be] odd”. A proof, very
short, is provided in (7′)–(7′′); in the steps which are made explicit the proof mimics
the one contained in the Platonic text (see below). The second argument hinted at by
Aristotle refers to the more refined combinatoric analysis45 needed to explicitly deter-
mine the relationship between number of terms, premisses and conclusions in a syllogism
which containsn terms. Aristotle says: “thus there will be many more conclusions

41 See the critical apparatus in Plato, ad loc. Thelemmahas been variously emended, if only
because its gender does not fit for the neuter of the subjectτρίτoν. This variatio can be easily
justified on stylistic grounds, but see the subsequent analysis.

42 The connection between the two passages had already been pointed out in Einarson 1936
(see note 56 on pp. 163–164).

43 Aristoteles, An. pr. 42b6-16.
44 I have slightly reworked the translation in Aristotle 1938, p. 331.
45 There is no explicit trace of it in the Platonic text. But recall that themilieuof combinatoric

analysis has always been an ideal one for proofs in the scheme of CI, from Levi Ben Gerson to
Pascal.
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than either terms or premisses”.46 But the sketchy setting up of the problem, which is
developed in the text just quoted and in a few subsequent lines, shows an awareness of
some subtle aspects47 which is not counterbalanced by the triviality of the conclusion.48

ii. There are clear points of consonance with the Platonic passage. The demonstrative
pattern, though less cogent, is similar: compare the final sentences (7′) and (7′′) with the
corresponding ones inParmenides. The imperfect tense verb

˘

�ησανwhich denotes the first
pair of even-odd quantities has a parallel in the unique instance of secondary sequence
verb �ǫπλǫoνǫ́κτησǫν which is present in the Platonic passage. Syntactical and lexical
choices in (4′)/(4) and in (7′)/(7) are strictly related: notice the presence ofσυµβαίνω

and the interchange of subject between�oρoι andδιαστήµατα, which implies the alter-
nance �ǫλάττω ǫ

˘

�ιναι/ �υπǫρǫ́χǫιν, parallel to �ǫλάττoυς ǫ

˘

�ιναι/πλǫoνǫκτǫ

˘

ιν. Moreover,
in addition to the already commented on term�oρoς, the correspondence betweenτò
πλ

˘

ηθoς τ

˘

ων �oρων andτo

˘

υ πλήθoυς τ

˘

ων �αριθµ

˘

ων is remarkable. (7′) and (7) are
almost the same sentence, as written by Plato and by Aristotle.

iii. The dissonances are interesting as well. It is clear that (7′)–(7′′) constitute in no
way a correct proof by CI. But we should recall that in the Aristoteliancorpusalmost
noproof isformalizedin a convenient way, and could not have been, given the character
of the extant writings. On the other hand, Aristotle extensively employs arguments
which shorten and rework more refined mathematical proofs. The importance of the
above text, if read in strict parallel with the Platonic one, lies exactly in revealing the ex-
istence of mathematical argumentative patterns otherwise destined to be submerged. In
this perspective, it is relevant to remark the change of subjectδιαστήµατα/πρoτάσǫις,
displayed by the clauseα �ι δǫ̀ πρoτάσǫις �ισαι τo

˘
ις διαστήµασιν. It is not easy to un-

derstand this fact without the assumption that Aristotle is in fact making reference
to a text or to a representation of the syllogisms as intervals and their terms: a text or
representation which should have been conveniently formalized, as the density of tech-
nical terms (see below) shows, and whose content Plato slightly reworks, in view of
his philosophical-stylistic aims. In my opinion a derivation of this kind is emphasized
by the transition from one term of the contrapositionδιάστηµα/ �αψις to the other. This
transition exploits the ambiguity of the first word: it is an “interval” separating the very
terms it links. Hence, it is not surprising that in Aristotle we can find a more stan-
dardized technical lexicon,49 whereas Plato preserves almost unchanged the logical

46 Aristoteles, An. pr. 42b25.
47 Notice for instance the careful separation – just to declare the separation immaterial – of

the cases in which the intervening term is added externally or in an intermediate position. This
Aristotelian strategy is not new: see, in a different context,Phys. VI.2, 233b2-11 (compare the
discussion in Knorr 1982, note 19 at p. 120).

48 This fact had already been recognized by Waitz: “Hoc quidem certum est, sed miror, quod
in numerum conclusionum non amplius inquisivit. [. . .] Sit numerus propositionum =n, numerus
terminorum =n + 1, erit numerus conclusionumn(n − 1)/2”. (Waitz, Organon, I, ad 42b25,
p. 441). Now, this proposition can find a convenient formalization just in the way proposed in
Fowler 1994 (see note 19 above). I think this could be a good (albeit very tenuous) textual link
missing in Fowler’s reconstruction.

49 The presence of the standard verbs�υπǫρǫ́χω andπρoστίθηµι, instead of the highly
unusualπλǫoνǫκτǫ́ω andπρoσγίγνoµαι, should be enough. In my opinion, this lexical nor-
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structure of the argument. Among the conceptual points Aristotle alludes to (relation-
ship even-odd and possible relevance of the position of the interpolated term), Plato

does not deal with the second point, which could have been relevant for him (the first
is not relevant). Perhaps such an accessory discussion could have slowed down rhythm
and cogency of Parmenides’ reasoning.

g. Collecting the remarks made on both texts, the individuation of the environment
in which to place a possibleUr-text, as well as the contents of such an “archetype”, is
almost forced: a Pythagorean source is very likely. As a further point, I only remark the
coherent and systematic use, in the passage from theAnalytica, of terms likeδιάστηµα,
�oρoς,50 παρǫµπίπτω, 51 πρoστίθηµι, and the introduction, resulting again from Aris-

totle, in a context dealing with the properties of odd and even. A thorough discussion
of such a question would take us outside the scope of the present paper, for instance
to completely rethink the connection between Aristotelian syllogistic and Pythagorean
arithmetic, as well as to reconsider the alleged narrowness of interest and absence of
nontrivial results elaborated by “ancient Greek mathematics” in the field of combinatoric
analysis.52

4. Complete induction and the ‘sorites’

A certain number of propositions contained in ancient mathematical works have
been alleged as instances of proof by CI. I list here some of them:

Elem. VII. 3, 14, 17, 35; VIII. 13; IX. 8, 9, 20 (Stamatis)53.

malization reflects a closer agreement with the original text, whose range of terminological possi-
bilities easily included all the relevant terms (see next remark), rather than a process of refinement
of the technical lexicon which had occurred in the – comparatively – few years which separate
these works of Plato and Aristotle.

50 The importance of these two terms in the field of the musical theory inspired by Pythagorean
ideas and of the researches on the properties of ratios between integers is evident. It is enough to
read fragment B2 DK of Archytas, or theSectio canonis. A classical discussion of the terminol-
ogy can be found in Szabò 1978, pp. 103–119. For the peculiar lexicon introduced by Aristotle

in his theory of syllogism see for instance Einarson 1936 or Smith 1978, but the whole subject
is worth a more detailed analysis, which I plan to undertake elsewhere. The insertion of theSectio
canonisin the Pythagorean tradition is a well-established fact. See for instance Barker 1981, or
Fowler 1987, pp. 143–153.

51 �ǫµπίπτω is the technical term used when referring to theinterpolationof a mean propor-
tional. It is employed, for instance, in this sense inElem. VIII. 8–10, 19–21, 24–27. It is present
also in prop. 3 – anearlier version of which is ascribed to Archytas by Boethius – of Sectio
canonis; and Aristotle makes use of itwith this meaningin An. post. 84b12. For a full discussion
of Boethius’ “translation” of Archytas’ result and proof see Knorr 1975, pp. 212–225.

52 But see Stanley 1997 for a first, strong indication in an exactly opposite direction. This
paper analyses Plutarch, Table-TalkVIII. 9, 732f. Contrary views are expressed in Biggs 1979,
while in Rome 1930 is said that an attentive “depouillement des ‘mathematici graeci minores”’
is needed.

53 See note 3.
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Elem. VII. 3, 27, 36; VIII. 2, 4, 13; IX. 8, 9 (Itard)54.
Proclus, In Platonis Rem Publicam, II. 27.1–29.4 (Kroll)55. (Freudenthal)56.

I do not want to embark on a detailed analysis of these texts: Freudenthal 1953 and
Unguru 1991 will suffice to this end. The answer is always the same: theyare not
well formed examples of proofs by CI, not even in the very “relaxed” meaning of this
expression advocated in Fowler 1994.57 Typically, the proofs are framed in a quasi-
general way, with instantiation of a few cases and subsequent (implicit) appeal to the
generality of the scheme of proof.58 In several instances, notably some among those
connected with the property of side and diagonal numbers, the proof itself is altogether
lacking.

I shall focus my attention, instead, on a different issue. I take as adatum, on the basis
of the analysis carried on in the preceding sections, that proofs in the scheme of CI had
actually been developed in a pre-Euclidean arithmetical context, and that their demon-
strative structure could have represented (as is attested by the care Plato employs in
stressing the relevant steps) a sort of logical challenge. I assume as a furtherdatumthat
proofs by CI are absent from later mathematical works, and that the absence of CI, even
in contexts in which we should regard as “natural” its application, is a strong indication
that the generality of this proof technique had not been understood. I leave to others
the task ofexplainingthis fact.59 Rather, I shall now briefly discuss a piece of evidence
supporting my contention that proofs by CI actually existed but that their potentialities
were misunderstood. Diogenes Laertius and Sextus Empiricus report the following
forms of the paradox known as the “Sorites”:60

It cannot be that if two is few, three is not so likewise, nor that if two or three are few,
four is not so; and so on up to ten. But two is few, therefore so also is ten.61

[T]he Sage [. . .] will assent to “Fifty-one is few”; for there is nothing between this rep-
resentation and that of “Fifty is few”. But as “Fifty is few” was the apprehensive repre-

54 See note 3.
55 Or Theon of Smyrna, Expositio Rerum ad Legendum Platonem Utilium, 42.10–45.8 (Hil-

ler), or Iamblichus, In Nicomachi Arithmeticam Introductionem Liber, 91.3–93.6 (Pistelli-Klein).
These passages discuss the construction of successive side and diagonal numbers.

56 See note 2.
57 But fragments like Archytas’ A24 DK and Zeno’s B1 DK could be worth a more detailed

discussion.
58 This step of the proof is usually verbalized through the repetition of the relevant part of the

πρóτασις, preceded by the adverb�oµoίως. A paradigm instance of this way of proceeding is
represented byElem. IX. 8. Proclus concludes his quasi-general proof with “καὶ �αǫὶ o �υτως”
(II. 29.4).

59 I only remark that textual tradition has been strongly selective in this respect, havingalmost
completely erased information on what we could call “techniques of combinatoric analysis”, even
developed in a very simple form (but see note 52 for textual support to the fact that techniques of
this kind should have existed).

60 I am indebted to Lucio Russo for illuminating discussions on this point. For a thorough anal-
ysis of the ‘Sorites’ in the Hellenistic philosophical tradition see Barnes 1982 and Burnyeat

1982.
61 English translation from Diogenes Laertius, II, p. 191 (VII. 82).
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sentation placed last in order, “Fifty-one is few” is the first non-apprehensive one. The
Good Man, therefore, will assent to the non-apprehensive representation “Fifty-one is
few”. And if he will assent to this as being in no wise different from “Fifty is few”, he will
assent also to the non-apprehensive “Ten thousand is few”; for every non-apprehensive
representation is equal to every other non-apprehensive representation.62

Remarks

1. In the above examples the numerical variable labelling the property coincides
with the “objects” the propertydirectly applies to. This fact links the object language
with the metatheorical level in the same way as we have observed in Plato. Notice also
that in this case the numbers involved are never “numbers of”.

2. The property under consideration (very often a variation onP(n) ≈ “n is few”) is
what we could call nowadays a “vague concept”.63 Clearly, CI does not work for vague
concepts. The difficulties connected with such a kind of predicates, and an inability to
clearly circumscribe the most generalgenusof predicates for which CI does work could
have resulted in (explicitly or implicitly) deeming this type of reasoning unreliable in
the context of a proof. The coherent use of quasi-general proofs in books VII-IX of the
Elementsis, very likely, an editorial choice which entailed a standardization of later
works. Moreover, the paradoxes themselves could have been built, and can be construed
as, an explicit critique to inductive proofs: they display, exploiting the weak point of the
argument by unduly stretching the set of allowed predicates, the typical features of an
argumentad hominem.64

3. Plato sets up a correct proof by CI but is wrong in its application. He somehow
reverses the ascending direction of the argument, referring the property just proved to
an integer which cannot be reached by the induction. Some versions of the “Sorites”
make appeal to a heap (the Greek name has this origin), from which a unit is subtracted
in succession.65 Here the vague concept is that of “heap”, and the inductive chain is

62 English translation (slightly modified) from Sextus Empiricus, p. 225 (Adv. Math. VII.
418–419). Otherloci in Sextus areAdv. Math. IX. 182–190,Hyp. Pyrrh. II. 253, III. 80. See also
Cicero, Acad. II. 93, Galenus On Medical Experience17.1–17.3 (extant only in Arabic; cited
in Long-Sedley 1990, vol. 1, pp. 222–223). For a complete list see Barnes 1982.

63 The “Sorites” itself often has a new name: it is called Wang’s paradox, the only difference
being that it is now stated with anexplicit use of CI, and so the conclusion “n is few” follows
for everyinteger. In my opinion, this is an instance of the modern tendency to attach a content to
formal manipulations: Wang’s paradox clearly displays an undue application of CI. The “Sorites”,
insofar as it does not make use of CI, only allows for a comparison of a pair of well determinate
integers. For a discussion of Wang’s paradox, see for instance Dummett 1978. See alsoThe
Monist, LXXXI (1998), dedicated toVagueness.

64 Recall that Eubulides of Miletus is credited to have put forward arguments in dialectical
fashion, among which the “Sorites” is included. Eubulides was contemporary of Aristotle and
pupil of Euclides, the founder of the Megarian school (see Diogenes Laertius, I, p. 236 (II.
108–109)).

65 See Horatius, EpistulaeII. 1.34 ff., Galenus On Medical Experience20.3.
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descending. Clearly, a descending inductive chain is nothing more than a shorthand,
standing for afinite number of identical steps. Failure of distinguishing between as-
cending and descending inductions amounts to a weakening of the logical independence
of CI, and reduces it to a notational device, eventually superseded by the method of
quasi-general proofs.

The preceding remarks strongly suggest that the “Sorites” paradoxes originate from
a (tendentiously) wrong use of a mathematical demonstrative technique, which disap-
peared early from the available supply of proof schemes: CI, in the form we have seen
at work in theParmenides, is a good candidate for it.
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